March 02, 2020

Dr. Allison Arwady, Commissioner Chicago Department of Public Health 333 South State Street, Room 200 Chicago, Illinois 60604

Re: Revised Variance Request

Bulk Material Storage Rules and Regulations

Calumet River Terminal

10740 South Burley Avenue, Chicago, Illinois 60617

Dear Dr. Arwady,

This Revised Variance Request for Calumet River Terminal's (CRT) terminal located at 10740 South Burley Avenue in Chicago, Illinois, is submitted to reflect recent changes in operations, including no longer receiving bulk-affected (manganese containing) material, and the continued gradual removal of existing bulk-affected material from the facility. This is an application for variances from certain portions of the Chicago Department of Public Health (CDPH) rules. CRT's original variance request was submitted June 12, 2014, with a response to comments submitted on February 24, 2015. A second variance request was submitted July 5, 2018 in response to your request dated May 24, 2018. An update to this variance request was submitted February 19, 2019, in response to the new requirements presented in the final City of Chicago rules, effective January 25, 2019 - Rules for Control of Emissions from Handling and Storing Bulk Materials (Rules).

CRT receives and stores until shipped, bulk commercial metals, with a complete list of products currently handled listed in Attachment A. Beginning in January 2020, CRT will no longer receive any bulk-affected material (manganese containing bulk solid materials), and all bulk-affected material currently stored on-site will continue to be gradually shipped off-site as the customers' needs dictate. Operations have declined significantly since the submission of the original variance request. In 2019, CRT received approximately 395,760 pounds of affected material, which is a significant decrease from the quantity received in each of the prior three years. Annually in 2018, 2017, and 2016, CRT received approximately 1.275 million pounds, 3.9 million pounds, and 49 million pounds of affected material, respectively. Likewise, in 2019, CRT received approximately 7.1 million pounds of non-affected material, which is a decrease from the quantity received in each of the prior three years. Annually in 2018, 2017, and 2016, CRT received approximately 12.4 million pounds, 922,000 pounds, and 2.8 million pounds of non-affected material, respectively.

CRT handles mostly manganese ore, silicon manganese, various grades of ferromanganese, ferrochrome, ferrosilicon, and scrap ferro alloys. Smaller quantities of ferromolybdenum,

ferrotitanium, ferrosilicon zirconium, fluorspar, are typically on hand. Minor amounts of other affected (manganese containing) and non-affected materials may also be handled as required by customers. The affected materials that are handled include ferromanganese alloys, silicomanganese alloys, and manganese ore. CRT handles and stores the bulk solid material (BSM) for its customers, but does not take ownership of the material. The description of the processes employed are provided in the January 2020 Fugitive Dust Plan (FDP), enclosed as Attachment B. As of January 2020, CRT is no longer accepting receipt of bulk-affected material, and existing bulk-affected material currently stored on-site will continue to gradually be removed from the site as the customers' needs dictate.

The FDP describes the location and area potentially affected by the BSM at the CRT facility. The pertinent data regarding the area potentially affected is shown by a demographic profile of the surrounding area based on the 2010 Census, and is from the United States Environmental Protection Agency (USEPA) Enforcement and Compliance History Online database (Attachment C). Demographic data presented is for a radius of three miles from the coordinates of the address location.

CRT is requesting variances be permanently granted from several of the CDPH regulations set forth in Part B of the Rules, in accordance with the provisions set forth in Part F(10) of the Rules. The regulations, from which CRT requests variances, are discussed below. Descriptions are provided of the activities for which variances are requested.

1.0 Part B (3.0)(3)(e), (f), (g), and (h), Part B (3.0)(4), and Part D (5.0)(1)v., vi, and part of Section vii.-Fugitive Dust Monitoring

The applicant requests a variance to be exempt from the requirement for installation and maintenance of permanent fugitive dust monitors. This would also include exemption from the requirements for the fugitive dust plan for the facility to include a statement certifying that control measures, devices, and technologies have been properly calibrated and maintained; a statement that all facility staff have been trained on the proper application and operation of such technologies; include a dust monitoring plan; include a contingency plan for monitored exceedances; include a contingency plan for monitoring equipment failure; and include a recordkeeping system with a schedule for routine inspection and maintenance of the monitoring devices and technologies

Materials handled at the CRT facility that meet the BSM definition include alloys of various types of metals. These materials are all very dense, with particles that settle quickly and within the immediate vicinity of a transfer operation inside of the building, and do not readily become airborne or scattered by the wind. The densities of these materials range from 114 pounds per cubic foot, to as much as 220 pounds per cubic foot. For comparison, the density of bulk petroleum coke is about 48 pounds per cubic foot. Petcoke is friable, and generates fugitive dust, which easily becomes airborne or scattered by the wind. Furthermore, all BSM stockpiles loading and unloading activities are now conducted indoors, significantly reducing the potential for generation of fugitive dust.

The facility is within an industrial region. The nearest residential properties are located approximately 600 feet east of the facility. There have never been any community complaints regarding visible emissions from this facility's operations, even when the facility stored material outdoors. Facility operations do not result in off-site fugitive dust emissions. Based on historic quantities handled, and on published emission factors, particulate emissions (PM₁₀) from CRT's BSM handling operations were negligible when storage was outdoors, and remain insufficient to generate opacity greater than 10 percent, or fugitive dust visible beyond the property line of the facility [3.0(2)], now that storage and loading are conducted indoors.

Fugitive dust monitoring is intended to detect pollutant concentrations elevated over background levels that can be credited to source emissions. At this location, establishing a reliable background level will be impractical because of a neighboring major source of fugitive dust. Immediately to the south and east of the facility, is an active storage operation for petroleum coke, which operates a large storage facility for material that is one-quarter to one-half the density of the materials handled by CRT.

Area background levels, have in the past, been demonstrated by Illinois Environmental Protection Agency testing to be elevated by this neighboring source to levels well above normal background. While the operations at the neighboring facility have been revised to reduce fugitive dust, it will still be difficult for fugitive dust monitors at CRT to detect small incremental fugitive dust emissions with a larger background source of fugitive dust immediately next door.

The neighbor has operated five fence-line air-monitoring stations, with daily results published by USEPA at the link below. The northwest and north monitors are located immediately at the property line with CRT, and are close to the building in which BSM activities are undertaken by CRT. The northeast monitor is located near the access road to CRT.

http://www2.epa.gov/petroleum-coke-chicago/kcbx-fenceline-air-monitoring-data

For the most recent available data (January 31, 2016 through January 31, 2018), daily PM₁₀ values remained near background levels and did not evidence any detectable contribution from CRT operations. Weekday values were not materially different from weekend values. CRT BSM handling, limited to weekdays, had no detectable effect on dust emissions. Analyses of air monitoring filters were also done for metals, and these results are consistently below levels of concern and do not evidence any detectable contribution from CRT operations. This ambient air monitoring demonstrates that CRT activities, operations, and storage of bulk materials emit no particulates that could create a public nuisance or adverse impacts to the surrounding area, environment, or property uses, even before BSM storage was relocated indoors.

An engineer's estimate for installation of the dust-monitoring network is attached (Attachment D). This network would include one met station and four Federal Equivalent Method dust stations with Bluetooth telemetry. Costs for installation are \$136,750.00 and annual operating, maintenance,

and reporting costs are \$19,680.00 per year. Assuming a five-year equipment life, the annualized costs are about \$47,030 per year.

CRT is a small business with two full-time employees. CRT considers its loss of business and revenue due to the elimination outdoor storage areas, barge loading/unloading, and crushing operations to be a hardship already endured in order to accommodate the dust regulations. Recovering the monitoring costs will require CRT to increase prices and will cause customers to seek other outlets, likely outside the City of Chicago. CRT considers this potential loss of business and revenue an unreasonable hardship.

As described in the revised FDP, facility operations will achieve ordinance goals by implementing best management practices to ensure that under no condition does opacity exceed 10 percent, nor will fugitive dust be visible beyond the property line of the facility [3.0(2)]. Application of best management practices is a more reasonable approach where no BSMs are stored outside, and there are no adjacent receptors.

The revised FDP is effective in mitigating dust from BSM activities. Significant changes have been made to the facility's operations to minimize the potential for generation of fugitive dust, including discontinuing of barge loading/unloading activities, discontinuing of the ore-crushing process, and movement of all BSM storage piles to the interior of the storage building. Daily logs have been previously submitted to CDPH as required. Enclosed are the 2019 opacity readings (Attachment E), which demonstrate the plan is being implemented and that activities do not create a public nuisance or adversely impact the surrounding area, environment, or property uses.

2.0 Part B (3.0)(6) - Wind Monitoring

The applicant requests a variance to be exempt from the requirement for the facility to operate a permanent device to monitor wind speed and direction.

Information from such a device is useful in the event the facility maintained large outdoor piles of BSM and had installed PM₁₀ monitors. However, the facility unloads and loads BSM indoors and stages them in piles inside of concrete block-lined bins, indoors. The regulation indicates the monitor should be centrally positioned in relation to the storage piles, which would be inappropriate for indoor storage piles. Building doors are closed during loading or unloading activities and at all times, except during ingress and egress of trucks. The facility has on-line access to real-time wind speed and direction information from Midway Airport, which is considered representative of the area of the CRT facility.

3.0 Part D (5.0)(2)(d) Enclosure Requirements

The applicant requests a variance from the requirement to have overlapping flaps or sliding doors, which shall remain closed except to allow material or vehicles to enter or leave, or to allow people to enter and exit. The CRT building meets all other enclosure requirements as listed in Part

D(5.0)(2)(a)-(c). All material handled on-site, including all non-packaged manganese-bearing bulk material, is stored within the enclosure as required by the Rules.

The CRT building has overhead doors that CRT has committed in its fugitive dust plan to keep closed at all times, except during ingress and egress of trucks, including during any loading/unloading event, and for one minute after loading/unloading to allow the dust to settle prior to opening the doors. Doors are also closed during high wind events. CRT considers the use of overlapping flaps on such a large ingress/egress to be a safety hazard, as well as a risk of damage to the vehicles, which are not owned by CRT. Damage to vehicles can easily occur if a flap is caught up in a moving vehicle or its moving parts.

For these reasons, the variance from this requirement is requested due to the potential for equipment damage and safety hazards of the overlapping flaps.

4.0 Part B (3.0(9)(d) - Transport

The applicant previously requested a variance to be exempt from transport requirement [3.0(8)(d)] for wheel wash and rumble strips; however, based on clarification in the CDPH response to the original request, this variance request was withdrawn because the criteria were met.

All truck traffic on-site travels on paved surfaces that are regularly maintained to prevent dust accumulations. Trucks are also inspected prior to leaving the site for accumulations of dust on their tires. If accumulation of on-site materials is found on tires, they are then cleaned with a hose that is accessible at the building egress point. Any dust carried onto the public roadways, located one-quarter mile from the site, would be picked up from off-site roadways. The ownership of the off-site roadway is documented in the Cook County Tax Portal for the legal parcel of the owned roadway, included in Attachment F. CRT is not responsible for the pavement and improvement of a third party's property, but does utilize a water truck as needed (discussed in the revised FDP) on that portion of the roadway traveled only by its trucks.

5.0 Part D (6.0) Filter-Based Metals Monitoring At Manganese-Bearing Bulk Material Facilities

The applicant requests a variance to be exempt from the requirement for installation and maintenance of Federal Reference Method PM₁₀ filter-based monitors to analyze the concentrations of manganese in the air. As stated above, the facility is no longer receiving bulk-affected (manganese containing) material and will continue to reduce the existing affected material from the facility.

As described under Variance Item (1), the affected materials handled at the CRT facility include ferromanganese alloys, silicomanganese alloys, and manganese ore. These materials are all very dense, with particles that settle quickly and within the immediate vicinity of a transfer operation inside of the building, and do not readily become airborne or scattered by the wind. Based on

historic quantities handled, and on published emission factors, PM₁₀ from CRT's BSM handling operations were negligible when storage was outdoors, and remain insufficient to generate opacity greater than 10 percent, or fugitive dust visible beyond the property line of the facility, now that storage and loading are conducted indoors. This lack of visible emissions is being monitored by a detailed inspection and housekeeping program, quarterly opacity readings, and real-time monitoring of wind conditions. Loss of product in the form of dust is a loss of customer-owned material. CRT is very sensitive to loss of customers' material, and takes great care to minimize or eliminate any loss.

An engineer's estimate for installation of the dust-monitoring network is included in Attachment D. The expense of a Federal Reference Method monitoring program has been found to represent a cost to CRT of approximately \$6,700.00 for capital equipment costs, \$5,000.00 for installation costs, plus \$42,640.00 per year in operating costs. Assuming a five-year equipment life, the annualized costs are about \$45,580.00 per year.

Based on the minimal amount of airborne manganese that could be present from CRT's operations, the temporary nature of the operations, the costs of business reduction already incurred, and the prohibitive cost to such a small, two-employee operation, CRT requests a variance from all sections of Part D (6.0).

6.0 Part E (8.0) Implementation Schedule

This section sets forth a three-phase implementation schedule for implementation of each part of the Rules, with the final phase becoming effective ninety days after finalization of the Rules. CRT requests a variance from the requirement to comply with this schedule until such time that CDPH has issued a ruling on this variance request. As stated above, CRT has submitted several variance requests to CDPH, including one in February 2019, shortly after the current Rules were finalized.

7.0 Part F (10.0)(2) Additional Requirements Of The Variance Application

This section addresses additional requirements of the variance application under Part F, Section 10, Item (2), b) through h).

b) This section requests: "a description of the process or activity for which the variance is requested," and "pertinent data on location, size, and the population and geographic area affected by, or potentially affected by, the process or activity". The description of the process is provided in the FDP as Attachment B and is supplemented with additional information provided herein and attached. The FDP has been updated since our previous variance request to reflect changes in operations.

The pertinent demographic data is shown by a demographic profile of the surrounding area based on the 2010 Census, and is from the USEPA Enforcement and Compliance History Online

database (Attachment C). Demographic data presented is for a radius of three miles from the coordinates of the address location.

- c) The quantity and types of materials subject to variance are described in the FDP and in Attachment B.
- d) This variance request demonstrates that CRT's BSM activities create negligible fugitive dust emissions that are insufficient to generate opacity greater than 10 percent or fugitive dust visible beyond the property line of the facility [3.0(2)]. Facility operations have been revised since the original request to move all BSM handling and storage indoors. The facility is also remote from receptors in residential areas (approximately 600 feet from building doorway to nearest residence). Issuing the variances cannot create a public nuisance or adversely impact the surrounding area, environment, or property uses.
- e)(i) The regulation requiring monitoring imposes an unreasonable hardship in excessive cost and resource commitment for a small company with a workforce of only two employees, and a low volume of business. Monitoring is inappropriate where all BSM is maintained indoors, and cannot generate emissions visible at the property line or fugitive dust above background levels. CRT considers its loss of business and revenue due to the elimination outdoor storage areas, barge loading/unloading, and crushing operations to be a hardship already endured in order to accommodate the dust regulations. Recovering the monitoring costs will require CRT to increase prices and will cause customers to seek other outlets, likely outside the City of Chicago. CRT considers this potential loss of business and revenue an unreasonable hardship. Application of best management practices is a prudent approach where no bulk solid materials are stored outside, and there are no nearby receptors. At this location, the presence of a neighboring source of fugitive petcoke dust also makes a requirement for particulate monitoring unreasonable.
- e)(ii) This variance application does not claim timeframe constraints such as permitting delays or force majeure.
- **e**)(iii) Proposed alternative measures are preferable because they accomplish the objectives of the ordinance, including assurance that there are no impacts to human health or the environment. They eliminate unreasonable measures causing a competitive disadvantage to a vital contributor of jobs and investment to the south side of Chicago, an area targeted by the city for economic renewal and reinvestment.
- f) The FDP describes compliance and best management practices. The facility is conforming to this plan and is in compliance with the ordinance, with the exception of those variances requested.
- **g)** Alternate methods of compliance and factors influencing the choice of applying for a variance are described herein, and in the FDP.

h) The applicant is Calumet River Terminal, and their authorized representative since 2016 has been Ms. Cheryl Sikorski, manager.

Compliance Program

The FDP sets forth the compliance program, best management practices, and demonstration that facility management of BSM will not adversely impact the surrounding area, environment, or property uses. CRT's variance application is limited to regulations under Part B. The facility has never managed coal or coke materials regulated under Part C. All loading and storage operations are contained within an enclosed building, making the facility not subject to regulation under Part E. CRT proposes reasonable conditions as set forth in the FDP. CRT understands a variance issued by the commissioner may be revoked if "operation of the Facility is creating a public nuisance or otherwise adversely impacting the surrounding area, surrounding environment, or surrounding property uses".

Change in Operations

CRT commits to providing a thirty-day advance notification for any expansion or change in operations subject to a variance issued by the commissioner.

We are now operating under the procedures described in the FDP. We manage only heavy, metallic BSM at the facility. Materials are managed within an enclosure and under procedures to minimize fugitive dust, as set forth in the FDP.

Thank you for your attention to this matter. Please contact me if you have any questions or wish to have a CDPH representative visit the facility.

Sincerely,

Cheryl Sikorski, Manager

Therest Sikarski

Calumet River Terminal

Enclosures:

Attachment A - Product Inventory

Attachment B - 2020 Fugitive Dust Plan

Attachment C - Demographic Data

Attachment D - Dust Monitoring Budgetary Costs

Attachment E - 2019 Opacity Readings

Attachment F - Access Road Ownership Documentation

ATTACHMENT A PRODUCT INVENTORY

TABLE 1 CRT MATERIAL ON HAND AS OF FEBRUARY 1, 2020

	Total (lbs)	Packaged (lbs)	Bulk (lbs)
75% Ferro Silicon	983,283	24,443	958,840
Calcium Silicon Hazardous	27	27	0
Cerium MischMetal	100	100	0
Ferro Titanium	64,500	64,500	0
Ferro Silicon Zirconium	2,369	2,369	0
Fluorspar	31,500	31,500	0
High Carbon FerroChrome	1,984,427	329	1,984,098
Low Carbon FerroChrome .10 C	887	887	0
Scrap Ferro Alloys	395,875	0	395,875
Silicon Carbide Briquettes	324,079	324,079	
Total Non-Affected Bulk Solid Material(s):	3,787,047	448,234	3,338,813
Affected B	Sulk Solid Material(
Affected B	The state of the s		Rulk (lbs)
	Total (lbs)	Packaged (lbs)	Bulk (lbs)
Electrolytic Manganese Metal	The state of the s		0
Electrolytic Manganese Metal High Carbon Ferro Manganese	Total (lbs) 57,708	Packaged (lbs) 57,708	0
Electrolytic Manganese Metal High Carbon Ferro Manganese High Carbon Ferro Manganese LP	Total (lbs) 57,708 2,756	Packaged (lbs) 57,708 2,756	0 0 0
Electrolytic Manganese Metal High Carbon Ferro Manganese High Carbon Ferro Manganese LP Low Carbon Ferro Manganese .5C	Total (lbs) 57,708 2,756 273,822	Packaged (lbs) 57,708 2,756 273,822	0 0 0
Electrolytic Manganese Metal	Total (lbs) 57,708 2,756 273,822 209	Packaged (lbs) 57,708 2,756 273,822 209	0 0 0
Electrolytic Manganese Metal High Carbon Ferro Manganese High Carbon Ferro Manganese LP Low Carbon Ferro Manganese .5C Ultra-Low Carbon Ferro Manganese .05C Medium Carbon Ferro Manganese	Total (lbs) 57,708 2,756 273,822 209 60,985	Packaged (lbs) 57,708 2,756 273,822 209 60,985	0 0 0 0 0
Electrolytic Manganese Metal High Carbon Ferro Manganese High Carbon Ferro Manganese LP Low Carbon Ferro Manganese .5C Ultra-Low Carbon Ferro Manganese .05C Medium Carbon Ferro Manganese Nitride Medium Carbon Ferro Manganese	Total (lbs) 57,708 2,756 273,822 209 60,985 229,719	Packaged (lbs) 57,708 2,756 273,822 209 60,985 229,719	0 0 0 0 0 0
Electrolytic Manganese Metal High Carbon Ferro Manganese High Carbon Ferro Manganese LP Low Carbon Ferro Manganese .5C Ultra-Low Carbon Ferro Manganese .05C Medium Carbon Ferro Manganese Nitride Medium Carbon Ferro Manganese Manganese Ore	Total (lbs) 57,708 2,756 273,822 209 60,985 229,719 61,746	Packaged (lbs) 57,708 2,756 273,822 209 60,985 229,719 61,746	0 0 0 0 0 0
Electrolytic Manganese Metal High Carbon Ferro Manganese High Carbon Ferro Manganese LP Low Carbon Ferro Manganese .5C Ultra-Low Carbon Ferro Manganese .05C Medium Carbon Ferro Manganese Nitride Medium Carbon Ferro Manganese Manganese Ore Low Carbon Silico Manganese	Total (lbs) 57,708 2,756 273,822 209 60,985 229,719 61,746 3,425,510	Packaged (lbs) 57,708 2,756 273,822 209 60,985 229,719 61,746 34,700	0 0 0 0 0 0 0 3,390,810
Electrolytic Manganese Metal High Carbon Ferro Manganese High Carbon Ferro Manganese LP Low Carbon Ferro Manganese .5C Ultra-Low Carbon Ferro Manganese .05C Medium Carbon Ferro Manganese Nitride Medium Carbon Ferro Manganese Manganese Ore Low Carbon Silico Manganese Silico Manganese	Total (lbs) 57,708 2,756 273,822 209 60,985 229,719 61,746 3,425,510 21,350 518,456	Packaged (lbs) 57,708 2,756 273,822 209 60,985 229,719 61,746 34,700 21,350 176,616	0 0 0 0 0 0 0 0 3,390,810 0 341,840
Electrolytic Manganese Metal High Carbon Ferro Manganese High Carbon Ferro Manganese LP Low Carbon Ferro Manganese .5C Ultra-Low Carbon Ferro Manganese .05C Medium Carbon Ferro Manganese Nitride Medium Carbon Ferro Manganese Manganese Ore Low Carbon Silico Manganese	Total (lbs) 57,708 2,756 273,822 209 60,985 229,719 61,746 3,425,510 21,350	Packaged (lbs) 57,708 2,756 273,822 209 60,985 229,719 61,746 34,700 21,350	0 0 0 0 0 0 0 0 3,390,810

ATTACHMENT B 2020 FUGITIVE DUST PLAN

FUGITIVE DUST PLAN

CALUMET RIVER TERMINAL 10740 SOUTH BURLEY AVENUE CHICAGO, COOK, ILLINOIS

Prepared For:
CALUMET RIVER TERMINAL, LTD

Prepared By:
CIVIL & ENVIRONMENTAL CONSULTANTS, INC.
NAPERVILLE, ILLINOIS

CEC Project 180-367

JANUARY 2020

TABLE OF CONTENTS

FACT SHEET

1.0	INTI	RODUCTION1
2.0	FAC	ILITY SETTING2
3.0	SOU	RCE DESCRIPTIONS3
	3.1	BSM - Part B (3)(B)
	3.2	BSM Stockpiles, Loading, and Unloading - Part B (3)(B)
	3.3	Calculation of Maximum Storage Capacity - Part B (3)(D)
	3.4	Bagging - Part B (3)(B)
	3.5	Screening - Part B (3)(B)6
	3.6	Roadway Drag-Out - Part B (3)(C)
4.0	DUS	Γ CONTROL PLAN - PART B (3)(E)8
	4.1	BSM Stockpiles/Loading And Unloading
	4.2	Bagging9
	4.3	Screening9
	4.4	Roadway Drag-Out9
	4.5	Spilled Material
	4.6	Facility Wide (General Housekeeping And Training)
	4.7	Stormwater Management
	4.8	Visible Dust Observations and Quarterly Opacity Testing
5.0	IMPI	LEMENTATION
	5.1	Responsibilities
	5.2	Timing
	5.3	Recordkeeping
		FIGURES
Figure	1.	Site Layout Plan
Figure		•
rigure	; 2;	Building Layout
		TABLES
Table	1.	Fugitive Dust Control Plan Implementation Activities
Table		Record of Sweeping and Watering
Table		Daily Fugitive Dust Inspection Log
Table	4:	Visible Emissions and Opacity Log

FACT SHEET

The Calumet River Terminal (CRT) is a warehouse operation located at 10740 South Burley Avenue in Chicago, Illinois, in an industrial area along the Calumet River. The property is surrounded to the south and east by the KCBX petroleum coke storage facility and on the west and north, respectively, by the Calumet River and a Bayou Steel Corporation steel warehouse/depot. The CRT employs best management practices to prevent fugitive dust from being generated by its operations.

Bulk solid materials (BSM) handled at this facility arrive by and are loaded out to trucks or occasionally railcars. CRT handles and stores the BSM for its customers, but does not take ownership of the material. CRT makes every effort to control the release of dust from the BSM, as this constitutes a loss of product to its customers. Fugitive dust management practices include loading/unloading within the building, routine inspections, roadway sweeping, spill cleanup, minimized drop distances, and stockpile and vehicle tarping. Practices are intended to conform to the State of Illinois and City of Chicago Air Pollution Control Rules and Regulations. The terminal has never had a complaint from its neighbors regarding fugitive dust or particulate matter emanating from its operations.

1.0 INTRODUCTION

This Fugitive Dust Plan (FDP) has been prepared for the Calumet River Terminal (CRT) to mitigate potential impacts to air quality resulting from fugitive dust associated with the facility's operations. The FDP will be operated in compliance with the City of Chicago Department of Public Health Rules for Control of Emissions from Handling and Storing Bulk Materials, dated January 25, 2019, as well as with Title 35 of the Illinois Administrative Code (35 IAC) Subpart K. The FDP will be reviewed and updated on an annual basis and submitted to the Chicago Department of Public Health (CDPH) for review and approval on or before January 31 every year. Additionally, the facility will submit an amended FDP with any changes, modifications, or additions to the facility's operations to the Illinois Environmental Protection Agency (IEPA) and the CDPH.

This current plan has been updated from the January 2019 plan. The plan differs from the previous plan submitted to the IEPA and CDPH in that it addresses changes in the operation of the facility, including no longer receiving bulk affected (manganese containing) materials beginning in January 2020, and the continued gradual removal of existing bulk manganese containing materials from the facility as customers' needs dictate, as well as a general reduction in overall throughput at the facility.

This FDP characterizes the sources of fugitive dust/particulate matter emissions. For each source, control measures are identified that are currently implemented. We certify the storage capacity calculations contained in this plan are accurate, to the best of our abilities. CRT is committed to preventing visible emissions through the implementation and regular review and amendment to this plan. This FDP has the full approval of CRT ownership. CRT has committed the necessary resources to implement the measures described in this plan.

We acknowledge additional requirements include:

- Maintaining a complete copy of the FDP at the facility.
- Making the FDP available for inspection during normal business hours.
- Notifying the CDPH and amending the plan as needed to reflect changes in the facility or its operation.
- Reviewing the plan annually and submitting it to the CDPH.

The terminal manager has the authority to commit the necessary resources to implement this plan.

Manager's Signature	Name	Date

2.0 FACILITY SETTING

The CRT is located in an industrial area on the Calumet River, approximately 15 miles south of downtown Chicago. The property is approximately 5 acres in size, and contains an approximately 80,000-square-foot warehouse. The property is surrounded to the south and east by the KCBX petroleum coke storage facility, and on the west and north by the Calumet River and a Bayou Steel Group steel warehouse/depot.

The river elevation at the site is 575 feet above mean sea level. Site elevations are approximately 590 feet above mean sea level. Elevations are consistent throughout the surrounding areas.

According to meteorological data compiled from several online sources (including www.myforecast.com, www.intellicast.com, average 38.01 inches of precipitation annually. Winds are predominantly southwesterly throughout the year, with an average wind speed of 9.25 knots. Air temperatures are temperate with average highs in the summer around 80 degrees Fahrenheit and average lows in the winter ranging from 18 to 30 degrees.

3.0 SOURCE DESCRIPTIONS

The following sections describe the specific sources of fugitive emissions. Dust control methods are discussed only in Sections 4.0 and 5.0.

3.1 BSM - PART B (3)(B)

CRT receives and stores until shipped, bulk commercial metals, with a complete list of products currently on-hand included in the table below. CRT handles material in both bulk form, and packaged (non-bulk) form. CRT handles mostly manganese ore, silicon manganese, various grades of ferromanganese, ferrochrome, ferrosilicon, and scrap ferro alloys. Smaller quantities of ferromolybdenum, ferrotitanium, ferrosilicon zirconium, fluorspar, electrolytic manganese are typically on hand. Minor amounts of other affected (or manganese-containing) and non-affected materials may also be handled as required by customers. Manganese-containing materials that are handled include ferromanganese alloys, silicomanganese alloys, electrolytic manganese, and manganese ore. As of January 2020, CRT is no longer accepting receipt of bulk affected material, and existing bulk affected material currently in storage will continue to gradually be removed from the site as customers' needs dictate. CRT handles and stores the BSM for its customers, but does not take ownership of the material.

CRT Material on 1	Hand - January 2020
Non-Affected Bulk Solid Material(s)	Affected Bulk Solid Material(s)
75% Ferro Silicon	Electrolytic Manganese
Calcium Silicon Hazardous	High Carbon Ferro Manganese LP
Cerium Misch Metal	High Carbon Ferro Manganese
Ferro Titanium	Low Carbon Ferro Manganese 0.5C
Ferro Silicon Zirconium	Ultra-Low Carbon Ferro Manganese 0.05C
Fluorspar	Medium Carbon Ferro Manganese
High Carbon Ferro Chrome	Manganese Ore
Low Carbon Ferro Chrome 0.10 C	Nitride Medium Carbon Ferro Manganese
Scrap Ferro Alloys	Low Carbon Silicon Manganese
Silicon Carbide Briquettes	Silicon Manganese

"BSM" refers to any solid substance or material that can be used as a fuel or an ingredient in a manufacturing process and that can become airborne or scattered by the wind. The materials handled at the facility meet the BSM definition. However, all bulk materials handled have a high density due to their metallic composition. Therefore, particulate matter released during handling will quickly settle back to grade, is not likely to become airborne or cross property lines, and will

not reach the nearest residential property, approximately 600 feet away. All material handling is performed indoors with the building doors closed. The only building ventilation is from roof vents located 75 feet above the working surface.

The cargos typically arrive and depart via trucks. The facility no longer receives material by barge, but does have a track siding to receive/ship materials by rail on a rare occasion. While on-site, bulk materials are staged in bins inside the warehouse, as shown in Figure 1. In 2019, CRT received approximately 7.1 million pounds of non-affected material and 395,760 pounds of affected material. This has decreased significantly from 2018, when the facility received approximately 11.9 million pounds of non-affected material and approximately 1.9 million pounds of affected material. Future throughput is anticipated to be at or below the 2019 levels. As of January 2020, CRT will no longer receive any affected material, and bulk affected material remaining on site will gradually be removed from the site as customers' needs dictate.

3.2 BSM STOCKPILES, LOADING, AND UNLOADING - PART B (3)(B)

Section 3.07 of the CDPH Regulations (Transfer Points) requires that: All material transfer points need to be maintained such that fugitive dust does not exceed a 10% opacity limit by using one of four options: a) total enclosure, b) water spray system sufficient to control fugitive dust emissions during operations, c) vented to air pollution control equipment, or d) transfer only moist material in a manner that minimizes the exposed drop.

Transfers are performed inside of the building while access doors are closed providing a total enclosure for the operation, meeting the above requirement using option "a)" of total enclosure. This succeeds in preventing the generation of a 10% opacity in the ambient air at the site. Current dust control measures employed on indoor and outdoor roadways, as described below, including sweeping, truck tarping, and a maximum vehicle speed of 8 miles per hour act to prevent the amount of loose material carried out of the facility by trucks. Also, because all operations and storage are done indoors, Part E of the CDPH Rules for Control of Emissions from Handling and Storing Bulk Materials, does not apply to the facility.

CRT handles "Dry Materials", which are bulk materials that are not permitted to get wet per customer specifications. The Dry Materials consist of metal alloys that are used by the steel industry. These alloys cannot get wet because of the high potential for risk of explosion and other catastrophic safety concerns when added to molten metal at a steel plant furnace.

CRT uses indoor stockpile storage of non-ferroalloy and ferroalloy materials. Loading/unloading operations of Dry Materials involving trucks are completed within an enclosure, within a bulk material storage building. Loading will not commence until both doors are closed. The layout of the storage locations in the building are identified on Figure 2.

The incoming materials are received by truck, unloaded inside of the building, and stored in piles inside of the building. No conveyors are utilized and no unloading or loading is done outdoors. Full size trucks from off-site are unloaded to the building floor, in/near the bin to be used for storage in a manner that minimizes drop heights. Based on the nature of the truck unloading process, the material is choke fed to the ground, and the driver usually has to pull forward to ensure that all material is discharged from the truck. A minimum one-minute wait time for trucks after unloading will be used before the doors are opened to allow fugitive dust to settle.

The storage piles are created by CRT's front-end loader pushing the material further into the bin, and therefore, piles are limited to a possible height at the peak of up to 12 feet, and typically are lower. Each pile is in a designated "bin" area to identify its location in the facility's records. Concrete block walls are used to segregate the bins and retain the piles. Storage piles within the bins containing manganese ore, silicomanganese, and ferro scrap alloys are covered by a tarp when loading/unloading operations are not being conducted. Material is stored until shipped out, resulting in very few on-site transfers of material. The bin locations are shown on Figure 2.

The materials ship out in trucks, and on rare occasion, by rail. Loading of trucks is done indoors with the building doors shut. A front-end loader moves material from where it is stored to a truck, dropping it over the side into the truck bed. One truck carries up to 23 tons of material. Loading a truck takes about ten minutes, resulting in a drop rate of approximately 135 tons per hour, and emissions per single loading event of approximately 0.1 pound. The loading is performed indoors, and due to the high density of the material, fine particulates do not mobilize and dusts settle quickly in the vicinity of the drop area. Truck beds of the ferro alloys are covered with a tarp immediately after loading. A minimum one-minute wait time will be used for trucks after loading before the doors are opened to allow fugitive dust to settle.

Shipment by rail is done in boxcars. The boxcar is pulled into the building, the building doors closed, and the front loader places material onto the floor of the boxcar via its 10-foot wide side door. The loader's bucket is placed approximately four feet into the car, and material is dropped from an approximately 3-foot height with the bottom of the bucket three inches from the floor, minimizing dust plumes outside of the boxcar. A bobcat inside of the boxcar will move the dropped material to the ends of the car. One boxcar has a capacity of 70 to 100 tons. The loading/unloading activities cannot, under any conditions generate opacity greater than 10%, or visible fugitive dust outdoors, beyond the property line of the facility.

3.3 CALCULATION OF MAXIMUM STORAGE CAPACITY - PART B (3)(D)

Bins 0 through 7 and 11 are located along the north side of the building, and have a maximum total capacity of approximately 8,700 tons, based on the weight of the densest material handled. Bins 12–20, 26, 27, 29, 30, and 31 are located along the south side of the building, and have a maximum

total capacity of approximately 5,800 tons, for a maximum building capacity of up to 14,500 tons. The typical capacity by weight is lower, due to lower density material being stored. Additionally, some materials are stored packaged (and therefore not considered to be BSMs), utilizing more square feet of space per ton of material. Material densities range from 114 to 220 pounds per cubic foot.

3.4 BAGGING - PART B (3)(B)

Within the building, some of the ferroalloy materials are occasionally bagged into packaging upon customer request. Bagging equipment is operated to contain particles within the product for transfer. The equipment used has no exterior exhaust. The only exhausts from the building are the doors at each end (open for truck entry and exit, but closed during bagging operations) and vent fans at the peak of the roof, which is 75 feet above the working floor of the building. The bagging equipment is located approximately 150 feet from the nearest door.

The bagger unit is a simple funnel, allowing material loaded by the front-end loader at the top to fall into the bag or container attached to the bottom. The bagger unit allows ferroalloys to be bagged into 2,000- to 4,000-pound supersacks; 25- to 50-pound bags or cans; or 551-pound steel drums. Once placed into containers, the material is no longer considered to be BSM, as it cannot be become airborne or be scattered by the wind.

3.5 SCREENING - PART B (3)(B)

If a customer requests that material be screened to separate nugget sizes, the front-end loader will be utilized to place a load of material onto a slanted metal box screen. The smaller sized pieces of material are collected beneath the screen and the larger pieces roll off the top, forming two separate piles. With this process, there is the potential for fugitive dust to be released when material is deposited onto the screens. Again, the screening is performed indoors; this particulate is very dense material and settles out quickly. The screening will only be done with the building doors shut, and the movable screen will be located at least 100 feet from the nearest door when in use.

3.6 ROADWAY DRAG-OUT - PART B (3)(C)

The roadways within the facility are under roof or paved. Incoming trucks enter the facility via the one-quarter-mile long, gravel right of way entrance road, an off-site ingress owned by the adjacent property owner. Trucks enter the building at the northeast end, crossing the scale, and after loading/unloading, they subsequently exit the south end of the building. They then turn around on the paved dock area, re-enter the building via the south door, are weighed on the scale and exit at the northeast end again. During rare occasions of high traffic volumes inside the building, typically only a few times per year, trucks may exit the south end of the building, turning

to the east and north on the exterior paved areas, crossing onto a gravel right of way on the adjacent KCBX property to the south of the building, to reach the gravel entrance road. As of January 2020, this gravel right of way to the south of the CRT building will be physically blocked off, and CRT will only use the KCBX property as a truck route on rare occasion, and with permission of KCBX.

The off-site unpaved right-of-way access road extends for approximately one-quarter mile before truck traffic reaches a paved public road. There are no paved roads within one-quarter mile of the facility. Cronimet Corp is the owner of the roadway, and runs a scrap yard to the northeast of the CRT facility. The repetitive use of the gravel road by truck traffic, some from CRT and mostly from the Cronimet facilities, results in a rough road surface and mechanical breakdown of the roadway materials into fine particles. Cronimet has been requested by CRT and by the City of Chicago to pave the roadway, but they have not responded to the requests. Rainfall or excessive dust control watering creates a paste of mud on the roadway surface that adheres to equipment tires within the facility. Under this condition, trucks leaving the area and traveling onto paved city streets have the potential to track out or drag out dirt and particulate material from the right-of-way on their tires and deposit it on public roadways. Due to the on-site paved conditions and the bumpy, unpaved distance to the public road, any material remaining on trucks when they reach a paved surface is unlikely to include the stored product material from inside the CRT building.

4.0 DUST CONTROL PLAN - PART B (3)(E)

The fugitive dust control plan provides a description of the current controls and long-term activities to evaluate and improve fugitive emissions controls for each of the identified sources. Responsibilities for implementation of this plan are outlined in Table 1: Fugitive Dust Control Plan Implementation Activities.

4.1 BSM STOCKPILES/LOADING AND UNLOADING

Currently, control of fugitive emissions during storage, loading, and unloading of BSM stockpiles is achieved through operational and source control methods. Unloading transfers from trucks to storage are conducted indoors only, by dumping the load, and pushing the material into a pile. The height of the stockpile is restricted to 12 feet by the physical limits of the loader. Control methods other than wetting the material are currently used throughout the facility to control fugitive dust emissions. Operationally, dust emission potential is controlled by:

- Doing all loading/unloading of trucks or railcars and storage indoors;
- Ensuring the overhead roll-up doors at each end of the building are closed during loading/unloading, and when winds are in excess of 25 miles per hour (note that the discontinuance of activity during High Wind Events of 15 miles per hour or greater does not apply to the CRT facility because all activity and storage is located indoors);
- A minimum one-minute wait time after loading or unloading before the doors are opened to allow fugitive dust to settle;
- Limiting the stockpile disturbed area;
- Reducing tumbling of materials being moved;
- Removing material from the stockpile bottom;
- Limiting the vertical drop height of materials;
- Cleaning the floor surface after a stockpile is removed;
- Covering indoor stockpiles of manganese ore and ferro scrap alloys with tarps;
- Sweeping the aisles at least once per shift on days when material is being transferred or otherwise handled;
- Watering exterior doorways, floors, and roadway surfaces as needed and weatherpermitting, and at least once per shift on days when material is being transferred or otherwise handled; and
- Covering truck trailers with tarps or using enclosed hopper trailers, and utilizing enclosed boxcars for rail shipments.

The leadman and/or operators continuously assess the material condition, moisture content, and type (non-ferroalloy versus ferroalloy) and remove fine materials from the floor surfaces to control

the potential for fugitive dust generation. The materials handled by CRT are alloys used in the steel industry. These alloys cannot get wet because of the high potential for risk of explosion and other catastrophic safety concerns when added to molten metal at a steel plant furnace. Therefore, it is impractical to wet the material during loading/unloading as it would render the material unusable for its intended purpose.

The manager performs a daily assessment of prior rainfall, wind speed, temperature, and weather forecast and monitors wind conditions throughout the day to evaluate whether the current operating protocols are appropriate and will be sufficient to control fugitive emissions.

4.2 BAGGING

As part of the daily inspections of the bagging area recorded on Table 3: Daily Fugitive Dust Inspection Log, the operation and condition of the bagging process will be reported on the inspection forms. Equipment or operational conditions potentially affecting fugitive dust release will be reported for correction. Additionally, the process is operated indoors with the building doors closed, which in effect, prevents fugitive dust from being carried outside the building due to wind.

4.3 SCREENING

Screening is performed inside the building and at least 100 feet from the closed overhead doors in order to minimize fugitive emissions. Additionally, the drop height is low to further prevent fugitive emissions from occurring. These conditions prevent potential emissions from being carried outside the building. Operation of screening equipment is recorded on Table 3: Daily Fugitive Dust Inspection Log.

4.4 ROADWAY DRAG-OUT

Roadway drag-out results from the interactions of unpaved road surfaces, wet-weather, and the inability to prevent material from accumulating on truck wheels or remove it when exiting the facility. While the facility is completely paved throughout, the right of way that provides access to the site is an unpaved gravel road. This could lead to potential dust emissions on-site if it is tracked onto the facility.

Therefore, street sweeping is conducted on all pavement within the property. The current protocol uses a street sweeper to remove accumulated particulates from the plant's paved areas. If sweeping effectiveness is observed to not be sufficient to clean the pavement due to dry conditions, excess traffic, etc., then the water spray system on the sweeper will be employed. The water spray will be used as needed in paved areas during non-freezing weather, when sweeping alone is deemed

inadequate. The street sweeping frequency will be two times daily, or once per thirty-five trucks when CRT is open for business, unless the roads are free and clear of BSM that could become airborne. However, sweeping and watering are suspended or augmented as appropriate, based on weather conditions (e.g., raining, freezing, sunny and windy days), truck activity, and roadway conditions. Pavement is also cleaned of residuals when each storage pile is removed for quality control, preventing contamination of material subsequently stored in that bin space.

Each day, on Table 2: Record of Sweeping and Watering, CRT documents the weather conditions, the location of the sweeping and/or applied water, and the sweeping and/or water application frequency on a daily basis. CRT also will document on this log when the sustained wind speeds exceed 25 miles per hour, during which the overhead doors at each end of the building are to remain closed (except when trucks are entering or exiting.) CRT documents on Table 3: Daily Fugitive Dust Inspection Log, whether the paved, on-site roads are free and clear of bulk solid material that could become airborne. The record shows the date and time when the street sweeping was performed. CRT believes that the sweeping program has, and will continue to be, an important tool in controlling fugitive dust emissions from the indoor stockpile areas and from the building.

Truck routes within one-quarter mile of the perimeter of CRT used to transport materials are shown on Figure 1. This one-quarter-mile stretch of roadway is owned by Cronimet Corporation. To minimize dust during transport, trucks handling or transporting BSM will adhere to the following measures prior to leaving the facility. These instructions are posted for all drivers at the check-in window:

- Truck drivers will adhere to the posted speed limit within the facility, which is no more than 8 miles per hour.
- Truck drivers will verify that any part of any tractor, trailer, or tire exterior surface is free of loose materials.
- Trucks will be visually observed by CRT employees at the weigh scale station for loose material prior to exiting the facility.

CRT has no control over drag-out from the access road. Although the access road is not part of the facility, if excess dust is observed from facility-related traffic, the facility will use a watering truck to water the portion of the roadway traveled only by its traffic.

4.5 SPILLED MATERIAL

Areas within the facility not regularly used for storage of material are kept free of any spilled or misplaced material by removing such material by the end of each work shift and using the street sweeper in affected areas.

4.6 FACILITY WIDE (GENERAL HOUSEKEEPING AND TRAINING)

CRT has two full-time employees on-site. All employees have inspection, monitoring, and/or response roles in the FDP and all receive annual training in their roles and responsibilities in the plan. Each employee is made aware of the general importance of identifying and controlling fugitive dust emissions throughout the facility, the means to minimize fugitive dust emissions as described in this plan, and is instructed to report observations to his/her immediate supervisor for appropriate corrective action.

4.7 STORMWATER MANAGEMENT

The operational areas of the site are asphalt paved. The pavement is sloped to direct stormwater to the center (away from property lines), then to run off to the southwest end, into a grassy retention area. Stormwater is also retained on site by berms for the adjacent KCBX facility that surround CRT's southeast, south, and southwest property lines. Stormwater is otherwise allowed to evaporate from the site. If sedimentation is observed on the pavement that could cause dust, it is cleaned up with the sweeper. No material is stored on the dock edge, on the southern paved area, or within 50 feet of the waterway.

4.8 VISIBLE DUST OBSERVATIONS AND QUARTERLY OPACITY TESTING

Visual observation of blowing fugitive dust from the facility will be observed through the use of Environmental Protection Agency Method 22. Logs for this purpose are included in Table 4: Visible Emissions and Opacity Log, to be used by trained CRT personnel. Visual observations will be purposely made once per shift and will note their observations at the downwind property boundary. If blowing fugitive dust is noticed by personnel, a Method 22 observation will be performed at that area of the facility and recorded.

The Regulation requires quarterly opacity emission evaluations pursuant to 35 IAC 212.109 (Method 9). An individual trained and certified to evaluate visible emissions will perform quarterly opacity evaluations in accordance with the measurement method specified in Method 9. Opacity reads will be performed at each of the two source types at the facility:

- Roadway; and
- Storage building egress points.

The roadway segment with only trucks travelling to/from CRT will be observed. These opacity read locations are designed to detect the greatest amount of dust emissions. In general, the opacity reads will be performed on clear days or partly cloudy days to provide the appropriate background

contrast for Method 9 reads. The regulation requires testing during a range of weather conditions, noted by the CDPH to include variations in temperature and wind conditions.

Quarterly opacity reads will be completed by the end of each quarter (i.e., March 31, June 30, September 30, and December 31). The specific day(s) will be selected by the certified reader, whose decision will be in part based on weather conditions, including temperature and wind, and on previous days that opacity reads were taken, in order to choose reading days on which opacity readings will be conducted to occur during a range of weather conditions. For example, during at least one of the quarterly opacity reads, the certified reader will endeavor to select specific day(s) with hourly average wind speeds over 10 mile per hour.

Opacity reads will be conducted if the weather conditions are suitable for compliance with Method 9 requirements. If it is raining, snowing, and/or foggy on the test date such that it would affect the ability to follow the Method 9 procedure, the testing will either be conducted later in the day, or rescheduled to the next available date.

Also in accordance with 35 IAC 212.109, opacity reads of roadways will be performed for a duration of four trucks passing, when possible. Scheduling of the opacity readings will take into account anticipated truck traffic for the day. However, due to the infrequency of multiple truck events, the opacity will be done for available truck traffic on the day of the opacity readings. Three readings for each truck pass will be taken at five-second intervals. The first reading will be at the point of maximum opacity, and the second and third readings shall be made at the same point, with the observer standing at right angles to the plume at least 15 feet away from the plume and observing 4 feet above the surface of the roadway. After four (or number based on the available traffic) trucks have passed, the readings will be averaged and recorded.

5.0 IMPLEMENTATION

The CRT is committed to the continued operation of the facility in accordance with applicable requirements. The plan identifies actions, responsibilities, and schedules aimed at maintaining the commitment relative to fugitive dust emissions. Table 1: Fugitive Dust Control Plan Implementation Activities identifies activities and responsibilities for the performance of this FDP.

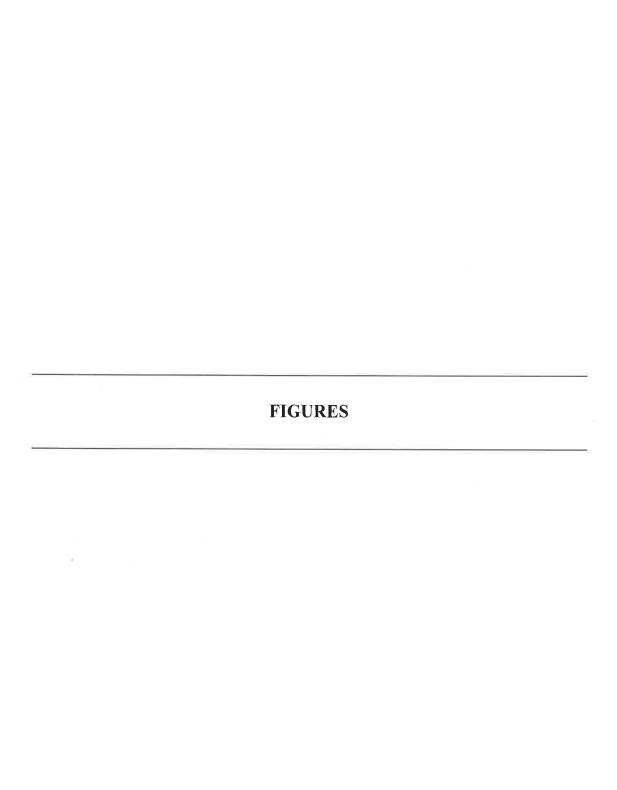
5.1 RESPONSIBILITIES

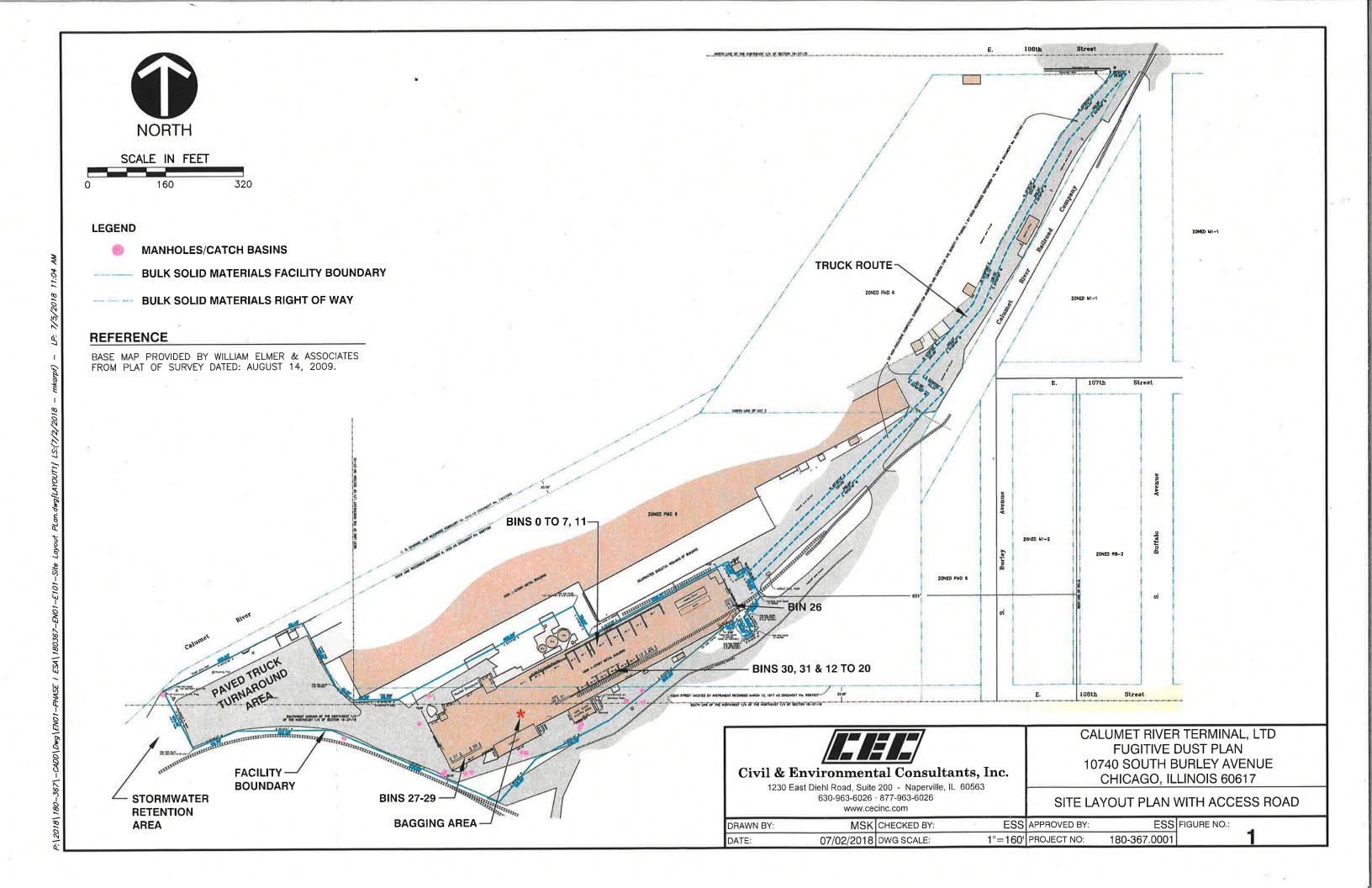
The successful implementation of this plan is the responsibility of personnel ranging from equipment operators brought in as needed, to facility management. As shown in Table 1: Fugitive Dust Control Plan Implementation Activities, activities have been assigned to any as-needed-operators, the leadman, and management personnel. Through the distribution of this plan, incorporation of applicable portions into personnel training programs, and ongoing internal dialogue, roles and responsibilities will be defined and reinforced.

5.2 TIMING

Facility personnel have been actively engaged in the management of fugitive particulate matter in accordance with applicable regulatory requirements. Table 1: Fugitive Dust Control Plan Implementation Activities itemizes specific schedule commitments that will be achieved and documented through corresponding records.

5.3 RECORDKEEPING


Table 1: Fugitive Dust Control Plan Implementation Activities identifies records that are maintained in accordance with this plan. On a daily basis, the facility will record on Table 2: Record of Sweeping and Watering all street sweeping and watering activities, the number of trucks through the facility, and the weather conditions, including wind speed and direction as documented by the local weather service. This record notes instances when such application is not done for reasons of weather, equipment malfunction, inactivity, etc., and when activities are suspended due to high winds. Observations made during daily inspections are also recorded on the Daily Fugitive Dust Inspection Log, contained in Table 3. All logs are maintained on-site for a minimum of three years.


Table 1: Fugitive Dust Control Plan Implementation Activities also shows that, on a quarterly basis, facility environmental personnel prepare a written summary of incidents of visible dusts and actions taken during the prior quarter. The facility maintains its schedule of inspections and maintenance of all dust control equipment. The quarterly report will be submitted to the IEPA

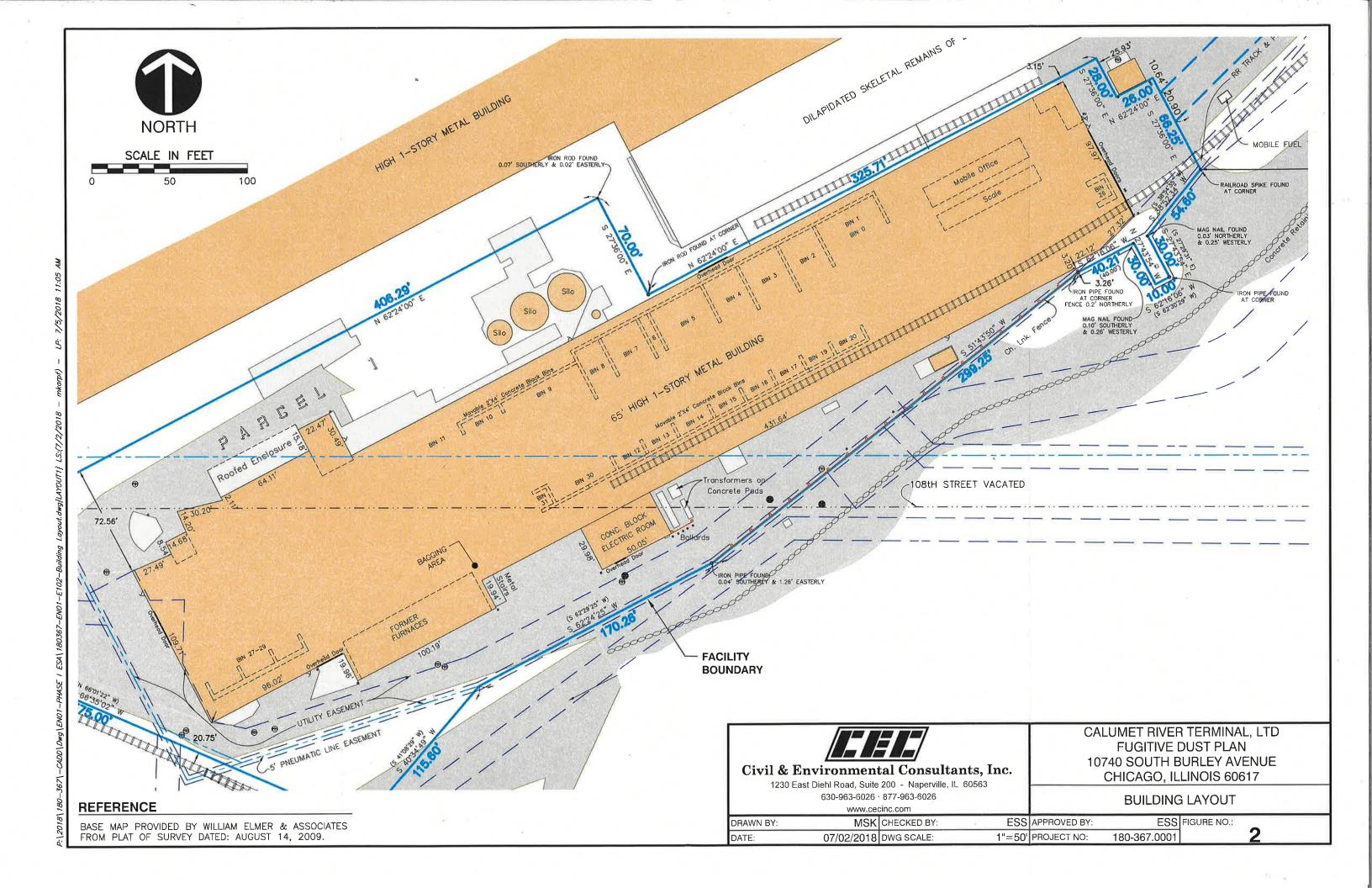

within thirty days of the end of a quarter (for quarters ending March 31, June 30, September 30, and December 31).

Table 4: Visible Emissions and Opacity Log will be used to record observations of visible emissions in accordance with Method 22 (35 IAC 212.107). Also on a quarterly basis, the facility will perform a visual reading of opacity in accordance with Method 9 (35 IAC 212.109). Records of opacity readings will be maintained on site for a minimum of three years.

On an annual basis, this plan is reviewed and updated as necessary, and is submitted to the CDPH on or before January 31 of each year. An annual summary of the application of control measures, as may be needed for compliance with the opacity limitations, will be prepared and submitted to the IEPA.

TABLES

TABLE 1 FUGITIVE DUST CONTROL PLAN IMPLEMENTATION ACTIVITIES

Source Area	Personnel	Activity	Schedule	Records
	Operators (temporary, as needed)	Assess condition of facility, transfer accumulated fines to piles, notify Leadman if additional sweeping is needed beyond the routine.	Ongoing daily	Daily Inspection Log
	Leadman	Daily inspection, activate additional sweeping if needed. Ensure daily log is completed.	Ongoing daily	Daily Inspection Log
BSM Stockpiles	Leadman	Ensures the daily recording of sweeping in stockpile area on Table 2 log is completed.	Ongoing daily	Record of Sweeping and Watering
	Manager	Conduct visual inspections of piles, record on Table 3 and advise Leadman of additional corrective actions as needed. Ensure daily log is completed.	Ongoing daily	Daily Inspection Log
	ivialiagei	Monitor wind speed and precipitation, record on Table 3 and prescribe additional area sweeping or watering, as needed. Ensure daily log is completed.	Ongoing daily	Daily Inspection Log
Roadway Drag- Out/In	Manager	Assess condition of the facility, record on Table 3 and notify Leadman if additional sweeping (in plant) or watering (off site) is needed. Ensure daily log is completed.	Quarterly	Quarterly reports
	Leadman	Monitor area and implement general housekeeping procedures, as needed. Ensure daily log is completed.	Ongoing daily	Daily Inspection Log
Bagging	Leauman	Daily recording of sweeping and/or watering in crushing and bagging areas on Table 2.	Ongoing daily	Daily Inspection Log
	Manager	Monitor area and coordinate with Leadman for corrective action, as needed. Ensure daily log is completed.	Ongoing daily	Record of Sweeping and Watering
Screening	Leadman	Monitor area and implement general housekeeping procedures, as needed	Ongoing weekly	Daily Inspection Log
Screening	Leadinan	Daily recording of sweeping and/or watering in screening area on Table 2.	Ongoing daily	Daily Inspection Log
		Maintain facility dust control campaign.	Ongoing daily	Record of Sweeping and Watering
		Perform Method 22 visual observation of facility emissions. If visible emissions cross property line, schedule a Method 9 certified opacity inspection.	Quarterly	Daily Inspection Log
		Conduct quarterly (seasonal) evaluation of control plan effectiveness. Submit quarterly reports to IEPA of incidents when dust control measures were not implemented.	Quarterly	Quarterly reports
Facility-Wide (General Housekeeping)	Manager	Update this Fugitive Dust Plan annually, including storage capacities, personnel changes, operational changes, etc. Submit new plan to CDPH, and if significant changes, submit to IEPA.	Annual	Updated Fugitive Dust Plan
		Enable the performance of a Method 9 opacity test of facility emissions by a certified technician	Annual	Method 9 Report
		Submit annual report to IEPA summarizing the application of control measures.	Annual	Annual report
		Conduct routine training with personnel affected by this plan.	Annual	Updated Fugitive Dust Plan
	Leadman	Monitor vehicle speeds for conformance with facility speed limit (8 mph). Ensure daily log is completed.	Annual	Training records.
		Monitor daily truck count, record on Table 3.	Ongoing daily	Daily Inspection Log

Civil & Environmental Consultants, Inc.

TABLE 2 RECORD OF SWEEPING AND WATERING CALUMET RIVER TERMINAL, CHICAGO, ILLINOIS

SWEEPING:

Start Time End Time Initials Location(s) Swept Conditions Average Conditions Con						WEATHER (WEATHER CONDITIONS		SWEEPIN	SWEEPING FREQUENCY METHOD	NCY MET	doi		
	Start Ti	me End	Time Ini	itials	Location(s) Swept*	Conditions (wet, rainy, snow, dry, etc)	Average Wind Speed (mph)	Doors to Remain Closed Due to High Winds*** (Y/N)	Pavement clear of dust matter?** (Y/N)			# of Trucks	Total Time of Sweeping (mins)	Comments, use of water spray, reasons for not sweeping, correctiv

"Locations: a = Scale area indoors, b = BSM areas indoors, c = Bagging are
"If roads are free and clear of material, no further records required
""Except when trucks are entering or exiting the building

Start Time End Time End Time End Time (Fig. 1) Start Time (Fig. 1) Start Time End Time (Fig. 1) Start Tim	WATERING:					WEATHER	WEATHER CONDITIONS		12				
	Date Star	t Time E	nd Time	Initials	Location(s) Watered*	Conditions (wet, rainy, snow, dry, etc)	Average Nind Speed (mph)	Activity Suspended Due to High Winds (Y/N)	Visible Emissions over 5 Mins? (Y/N)	Roads already wet (indicate watering or weather)	Oty of Water Applied (gallons)	Quantity of CaCl or salt applied	Number of Passes Comments, reasons for not watering, corrective measures, etc.
													X

TABLE 3 DAILY FUGITIVE DUST INSPECTION LOG CALUMET RIVER TERMINAL, CHICAGO, ILLINOIS

INSPECTION ITEM/	Mo	onday		Tue	sday		Wedr	nesday		Thu	sday		Frid	ау	
CORRECTION ITEM	ОК	иот ок	INITIALS	OK	NOT OK	INITIALS	OK	NOT OK	INITIALS	OK	NOT OK	INITIALS	ОК	NOT OK	INITIALS
BSM STOCKPILE AREAS	: "XB	N DILIM	N I IVIT	.,//W.≠**1			D3 45 5		de la la						Maria de la compansión de
Inspect for BSM accumulation															
BSM fines collected and recycled by Operator.	ű,			y I	0"			glie	البرو				, là L		
Sufficient moisture is present to suppress dust															
Operator natified to water equipment runs.		A	100	L	5 1				47			2 112			x W
Visible emissions from building over 5 minute period, recorded on Table 4															
BAGGING MACHINE	ACT	VITY? (Y/N		ACT	IVITY? (Y/N		ACT	IVITY? (Y/N)		ACT	IVITY? (Y/N		ACT	IVITY? (Y/N)
Inspect container for proper placement in bagging process															
Reset alignment of container.			l sv			1		1,,1		1.2	11			N IN	
Inspect for dust escaping from either machine or container.															
Control flow into container or report to Leadman for correction.					U,	ų, ru		LE I	, "		lu.,	L.			
nspect ground surface area around bagger for dust accumulation															
Operator to remove dust or report o supervisor for correction.					. 6"			5 Y		- J		WE			ΙĞ
Visible emissions from building during bagging operalions recorded on Table 4.															
ROADWAYS	TRU	CK COUNT		TRU	ICK COUNT		TRU	CK COUNT	112	TRU	ICK COUNT		TRU	ICK COUNT	
Visually inspect paved aleas for accumulation of BSM.															
use street sweeper to clean the facility.Record use on Table2.						1146	H-" ,			9"		AL VIII	ir:		
If sweeping is deemed insufficient and forecast temperature is above 32°F, use street sweeper with water spray to clean the facility:															
Nolify Manager if street sweeper is not effective.				Υ,				A PE				T-1,-	V 8		
Visually inspect the unpaved roadway entering the facility for dryness/dust.															
f forecast lemperature is above 32°F, use water truck to spray for dust control. Record use on Table 2.	ell ,					J.MT		RE							
Nolify Manager if water truck is not effective															
SCREENING	ACT	IVITY? (YIN)	ACT	IVITY? (Y/N		ACT	IVITY? (Y/N)	ACT	IVITY? (Y/N	1	ACT	IVITY? (Y/N)
/isible dust generaled during screening observed to potentially be carried by wind off sile?															JI
Operator to adjust flow of material fo minimize dust generated.	. J			4	lites,	J. ST	E.,						J. J.		
/isually inspect around and under the creen for the presence of accumulated ISM lines.															
Report to Leadman and Operator to emove fines.	8 87 7	Free		WI,	W 1	Page 1	11 2		H.		V VA	U.S.	y Lws		b.

TABLE 4 VISIBLE EMISSIONS AND OPACITY LOG CALUMET RIVER TERMINAL, CHICAGO, ILLINOIS

Year:

Month:	S. Markey M.	810 Kin 14		Visible Emission Sur		*** If Method 9
	Initials of Observer	Date	Time	Visible Emissions? Yes/No	** Corrective Action within 8 hours?	applicable % Opacity
1						
2						
3						
4						
5						
6						
7						
9						
10					-	
11						
12						
13						
14						
15						
16	1					
17						
18						
19				1		
20						
21			9	1		
22						
23						
24						
25						
26	,					
27						
28						
29						
30						
31						

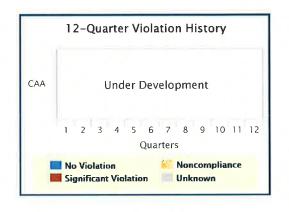
^{*} Please indicate "N/A" for dates when the facility is not in use.

^{**} If visible emissions are observed, perform corrective action within eight hours. If emissions persist, perform a Method 9 within 24 hours of the initial observation.

^{***} An indivual must be certified to perform a Method 9.

ATTACHMENT C DEMOGRAPHIC DATA

Detailed Facility Report


Facility Summary

CALUMET RIVER TERMINAL 10740 S BURLEY AVE, CHICAGO, IL 60617 ①

FRS (Facility Registry Service) ID: 110056367701 EPA Region: 05 Latitude: 41.70025 Longitude: -87_54498 Locational Data Source: FRS

Industry: Miscellaneous Manufacturing

Indian Country: N

Enforcement and Compliance Summary 🗥

Studental	Service	Date of Last Inspection	- Comptioner Status	Que in NC (Noncomplemes) (of 12)	Qtrs in Separficant Variation	Informal Enforcement Actions (5 years)	Framel Enforcement Actions (5 5449)	Possition from Formal Enforcement Actions O. Scient.	FPA Councy years)	Potaltion from EPA Cents (5 years)
CAA	2	84/27/2016		ü	0.	4	Terr	14:	-	

Regulatory Information

Clean Air Act (CAA): Operating Minor (IL000031600GZM) Clean Water Act (CWA): No Information Resource Conservation and Recovery Act (RCRA): No Safe Drinking Water Act (SDWA): No Information

Other Regulatory Reports

Air Emissions Inventory (EIS): 16798111 Greenhouse Gas Emissions (eGGRT): No Information Toxic Releases (TRI): No Information Compliance and Emissions Data Reporting Interface (CEDRI): No Information

Facility/System Characteristics

Facility/System Characteristics

108	CAA	16798111		OPERATING		N	
AIR	CAA	41.000034680G2Nt	Minur Emissions	Operating	CAASIP	N	

Facility Address

Nystens	Statute	Montifier	Facility Name	Earthly Address
FREE		110056367701	CALCMIT RIVER THRMINAL	10740 S BURLEY AVE, CHICAGO, II 60617
EIS	CAA	16798111	CAIAMET HIVER TERMINAL	19740 S BURLEY AVE. CHECAGO, II. 40617
AJR	CAA	11.00003100003234	CALUARIT RIVER TERMINAL	10740 S BURLEY AVE. CHICAGO, II. 60617

Facility SIC (Standard Industrial Classification) Codes

Facility NAICS (North American Industry Classification System)

Codes

Strices	Iduatifier	3CMCS Code	NAICS Doubletion
E(S	16798111	339999	All Other Miscellaneous Manufacturing
AIR	11.00003100042/34	339999	All Other Miscellineous Manufacturing

Facility Tribe Information

Biographics Name	Tobe Same	EPA Tobal RI	Thetaece to Tailse (miles)
	No	data records returned	

Enforcement and Compliance

Compliance Monitoring History (5 years)

Statute	Source ID	System	Inspection Type	Lead Agency	Date	Finding
CAA	IL000031600GZM	AIR	# Cli On-Site	State	04 27 2016	
САА	II,000031600GZMJ	AIR	∦ CE O _B -S _{ele}	Status	11/19/2013	

Entries in italics are not considered inspections in official counts.

Compliance Summary Data

Station	Source ID	Curvat SSC (Significant Noncompliance) HPV (High Primity Variation)	Description	Cornert As Of	(Jan in NY (Nimcomplianus) (of 12)
HEAA	B.ORRODAGOROLES	760		ING TO 2018	(90)

Three Year Compliance Status by Quarter

Informal Enforcement Actions (5 Years)

Statute	Sydem	Source ID	Type of Action	Land Agency	Date
CAA	Alk	8,00003360003254	Notice of Violation	State	04/22/2014

Formal Enforcement Actions (5 Years)

Environmental Conditions

Water Quality

Waterbody Designated Uses

Bench Code Waterhody Name	Pateptional Use Recreational Use	Aquetic Life Use Shelli	liide Use	Beach Clevany Within Last Vene	Bunch Classec Within Last Two Years
		No data records retu	urned		
· Quality					
Nonettainment Area?		Pollutani(s)		Applicable Nomettain	ment Standardic)
Yes		Ozimi		8-Hour Ozo	
No		Lead			
Yes	F64	ticulate Matter		PM-2.5 (1997)
No	S	affur Dioxida			

Pollutants

Toxics Release Inventory History of Reported Chemicals Released in Pounds per Year at Site ①

TREE Facility 165 Year	Total Air Emissions	Surface Water Decharges	Off-Six Transfers to POS We (Publicly Council Treatment Works)	Underground Injections	Releases to Lond	Total On site Referen	Total Official Relation
			No data records returned				
ii .							
				_			
Toxics Releas	e Inventory	Total Releases a	and Transfers in Pounds by Chemical	and Year ①			
Toxics Releas	e Inventory	Total Releases a	and Transfers in Pounds by Chemical	and Year ①			

Demographic Profile

Demographic Profile of Surrounding Area (3 Miles)

This section provides demographic information regarding the community surrounding the facility. ECHO compliance data alone are not sufficient to determine whether violations at a particular facility had negative impacts on public health or the environment. Statistics are based upon the 2010 US Census and American Community Survey data, and are accurate to the extent that the facility latitude and longitude listed below are correct. The latitude and longitude are obtained from the EPA Locational Reference Table (LRT) when available.

Radius of Area	3	Land Area	83%	Households in Area:	27,670
Contact Latinuda	-11,70025	Water Area	17%	Housing Units in Area:	31,331
Comer I organida	-87.54614	Population Density	3,806/sq mi	Households on Public Assistance	864
Total Persons:	80,248	Percura Materity	85%a	Persons Below Poverty Level:	41,131
Race Hreskshown		Ponumi (%a)		Ags Hruskilona	Person (* d
White		27,793 (35%)	Child	5 years and younger:	5.726 (7% _e)
African-American	:	34,102 (43%)	Minors	17 years and younger:	22,143 (28%)
Hapmic-Origin:	(33,879 (42%)	Adult	s 18 years and older:	58,106 (72%)
Asian/Pacific Island	er:	267 (0%o)	Senio	rs 65 years and older:	11,222 (14%)
American Indian		564 (1%)			
Other/Multirectal		17,522 (22%)			
	Level (Persons 25 & older)		Pinnes (%)	Israins Braikdown	Households (*-a)
1/ducation					
	ns thus 9th Grade:		7,203 (13,5%)	Less than \$15,000:	4,976 (17,38%)
t.	through 12th Grade:		7,203 (13,5%) 5,989 (11,23%)	Less than \$15,000: \$15,000 - \$25,000:	4,976 (17,38%) 3,845 (13,43%)
1,4 9th					

Education Level (Persons 25 & older)	Person (Co)	Income Beedshown	Discretiolds (*a)
B.S./B.A.cor/Mires	7,853 (14,72%)	Greater than \$75,0000	6,094 (21,28%)

ATTACHMENT D DUST MONITORING BUDGETARY COST

Attachment D Revised Variance Request Dust Monitoring Budgetary Cost Annual Operation

Task		Unit Rate	Estimated Days and Units	Es	timated Cost
<u>TASK 1</u> Quality Assurance Project Plan	\$	6,750.00	Lump Sum	\$	6,750.00
<u>TASK 2</u> Project Mobilization					
10-meter Met Station w/solar	\$	8,000.00	1	\$	8,000.00
FRM PM10 Dust Monitorig System	\$	6,700.00	1	\$	6,700.00
Battery powered FEM dust monitoring station	\$	22,000.00	4	\$	88,000.00
Installation per system	\$	3,000.00	6	\$	18,000.00
Labor	\$	6,000.00	Lump Sum	\$	6,000.00
Foundation pad with pole and bollards, electric service, and fencing	\$	5,000.00	6	\$	30,000.00
FEM Bluetooth Telemery to Local PC			Included		
		Total Cap	itol Cost =	\$	163,450.00
TASK 3 Perimeter Monitoring Station Operation					
FRM Lab Costs	-		Annual	\$	16,000.00
Expenses (Monitor parts/supplies)	\$	50.00	12	\$	600.00
TASK 4 Data Management	7	30.00	12	٠	000.00
FRM Data collection/analysis reporting	\$	2,220.00	12	\$	26,640.00
FEM Labor (Assumes 8 hrs/month at \$105/hr)	\$	840.00	12	\$	10,080.00
TASK 5	7	840.00	12	7	10,080.00
Annual Summary Report					
Labor [1]	\$	8,500.00	Lump Sum	\$	8,500.00
Expenses	\$	500.00	Lump Sum	\$	500.00
	_	Total Annual C	perating Cost =	\$	62,320.00

Notes:

[1] Reporting costs based on one year of operation and data collection

ATTACHMENT E 2019 OPACITY READINGS

CEC Project #180-367

Civil & Environmental Consultants, Inc. EPA Method 9 pursuant to 35 IAC 212.109 for roadways

particular and the second											-			,
SOURCE NAME CAlumet R	iver te	rminal	10	9	00	7	6	5	4	ω	2		Truck Sec	Obse
ADDRESS 10740 Sou	the Bur	Yeur Ave.										0	0	Observation Date
10.10 000		100										0	(J)	on Da
CITY	STATE	TZIP										0	10	<u> </u>
Chicago	14	LOV17		_	-	-	_			_	_		15	
773-121-5300	SOURCE	D NUMBER				-	-					_	5 20	09
PROCESS EQUIPMENT TOOKS		OPERATING MODE			_	-	-		_				0 25	20 /2019
CONTROL EQUIPMENT YOURS		OPERATING MODE NA-YOUN											30	101
DECCRIDE ENTECTON MOINT		INIM- YOU.					_						35	احا
START ROOD THICK W	meas		-	-	-	-	-	-		-	_	-		1
HEIGHT ABOVE GROUND LEVEL	HEIGHT RI	ELATIVE TO OBSERVER											40 4	
DISTANCE FROM OBSERVER	DIRECTIO	N FROM OBSERVER											05	
STAR 140 (4 STOP	START 31	5º STOP 315°											50	.
	10110												55	
START NA -NOVYOP	PLUME TY	PE: CONTINUOUS NIERMITTENT											₽ 0 1	Sta
WATER DROPLETS PRESENT:		DROPLET PLUME:										0	Total of Opacity Readings	Shart Tim
	NOT YES ATTACHED DETACHED NOT IN THE PLUME AT WHICH OPACITY WAS DETERMINED												of city ngs	9
START 4 PA about fround (O THE SP	CAMP	_		-								30 Z	-
DESCRIBE BACKGROUND START GOW WOLL		same										S	Number of Readings	<u></u> .
BACKGROUND COUR	STOP SKY CONI												oer ding	0
START WWW STOP SWING	START (N	er caststop source						_			-		s of	3
	WIND DIRI											0%	_0 ≱	-
START 15MPN STOP SOME	WET BULE			1								0	Average Opacity	
START 39°F STOP Soume	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,												ge i†y	
Source Layout Sketch		Draw North Arrow							Sta	Sta	Sta	Sta	ဂ္ဂ	Enc
1-1-1	K Emission	\sim 1							Start time:	Start time	Start time	Start time:) m	End Time
1000	1	Politic V							le:	.e.	<u>.</u> ē.	<u></u>	Comments	n n
		M										=	15	=
Observers Position	1 ~40	PT .										01:10		1:10
	7											3		RM
12	100	_										P		>
Sun Loc												ľ		
	vercost										1			
Key		OBS	ERVE	R'S N	AME, (F	RINT)				1		٠	
Sun ✓ Plume → V	Vind		ODE	ERVE	HM)	Mil	HUR	1			DA	TE		
COMMENTS ONLY I THICK AVAI	lable +	to read out down	9	SPA)-W	Wi	SUL)					18/0	20/201	9
0	0											1		
I HAVE RECEIVED A COPY OF THES	OBSERVATIONS	CER	TIFIE	BY:	. 1					DA	TE 1	nlasio	,	
SIGNATURE		,			WOV	rt					70.7		10/2018	2
TITLE		DATE	VER	IFIED	RA:						DA	IE		

CEC Project #180-367

Visible Emissions Observation Form

calumed ph	ier ter	minal	OBSERV	20	10ATE 2019	V	STAR	TTIME 2/AVY	١	STOP	time 2 -7 8	m
ADDRESS 10740 South B	urter	Ave	SEC	0	15	30	45	SEC	0	15	30	45
	0		1	n	0	0	0	31				
CITY	STATE	17IP	2	0	0	0	10	32				
CHICAGO	11	^{ZIP} 40617	3	Ö	Õ	0	0	33				
PHONE 773-221-5300	SOURCE	ID NUMBER	4	Ö	0	0	0	34				
PROCESS EQUIPMENT Front Door to Storage		OPERATING MODE	5	0	0	0	0	35				
Front Door to Storage	Blog.	Normal	6	0	0	0	0	36				
CONTROL EQUIPMENT	U	OPERATING MODE	7	0	0	0	()	37				
N A DESCRIBE EMISSION POINT	20.2 . 100		8					38				
START ENTY DOOY TO STOY HEIGHT ABOVE GROUND LEVEL	00x B10	30X·	9					39				
N 4 11	HEIGHT R START	HATIVE TO OBSERVER	10					40				
DISTANCE FROM OBSERVER	DIRECTIO	N FROM OBSERVER	11					41				
START WHOLL STOP EAVING	START 2	316° STOP 316°	12			1		42				
DESCRIBE EMISSIONS START NOV-E	STOP	Marad	13					43				
START NOVE EMISSION COLOR	PLUME TY	None.	14					44				
START NA STOP	FUGNINE	□ INTERMITTENT □	15			<u> </u>	-	45			-	_
WATER DROPLETS PRESENT:		DROPLET PLUME:				-	-	46			-	
NOM YES POINT IN THE PLUME AT WHICH OP		ED DETACHED D	16	-				1		_	-	\vdash
	same	17				-	47					
START W 4 PT NOVE GROUND		NAME OF THE PARTY.	18				-	48				
START GVEY 6/04	STOP SKY CONI	same	19					49				
START GREY STOP GREY		RY COSTSTOP	20					50				_
WIND SPEED	WIND DIR	ECTION	21					51				
START SMON STOP SWIPH	START S		22					52				
START 39°F STOP39°F	WET BULE	3 TEMP RH,percent	23					53				
			24					54				
Source Layout Sketch		Draw North Arrow	25					55				
[FT] :	X Emission	n Point	26					56				
	1		27					57				
	Laure Ci		28			1		58				
Observers Position	1-240ft	•	29					59				\vdash
- X	5		30		-	\vdash	1	60				\vdash
14	10°	_	AVERA	GE OPA	CITY F	OR	1	NUMBE				OVE
Sun Loca	ation Line		HIGHES			0)(% WERE	· 0	
Kov	creast	RANGE	OF OP	ACITY F MINII		Ď		MAXIN	иим	0		
Key ☆ Sun		OBSER		NAME (F								
COMMENTS	Menora J		OBSER	VER'S		URE			DAT	20	2019	
WITH AWARDON'S ON	no emissions observed					000			1 0	120	2011	_
HAVE RECEIVED A COPY OF THESI	IAVE RECEIVED A COPY OF THESE OPACITY OBSERVATIONS					ı			DAT	E,	1 4	`
SIGNATURE			CERTIF	Atv	ome	t				10/10	2011	<u></u>
TITLE		DATE	VERIFIE	D BY:					DAT	E		

OEC Project # 180-367

Visible Emissions Observation Form

SOURCE NAME Calumet 1/21 vev	Termi n	al		ATION	DATE 201	3	STAR	314	m	STOP	TIME .43#	\n_
ADDRESS 10740 South 1			SEC	0	15	30	45	SEC	0	15	30	45
			1	0	Ô	0	n	31				
CUTS	LOTATE	ZíP	2	0		0	0	32				
Chi ago	STATE	40617	3	Ö	8	0	Ŏ	33				
PHONE	SOURCE	D NUMBER	4	0	Ö	0	ō	34		1		
773- 121- 5300 PROCESS EQUIPMENT	N					0	0	35		-		
Storal Blow - Back C Control Poulphelit	700C	OPERATING MODE	5 6	90	0	0	0	36				
CONTROL POUIPMENT		OPERATING MODE	7	0	0	Ö	O	37				
DESCRIBE EMISSION POINT		N/A	8	σ	0		0	38		 		
START BUCK door to	<toraa< td=""><td>e blda.</td><td></td><td></td><td></td><td></td><td>-</td><td>39</td><td></td><td>-</td><td></td><td>_</td></toraa<>	e blda.					-	39		-		_
HEIGHT ABOVE GROUND LEVEL	HEIGHT R	FLATIVE TO OBSERVER	. 9		-		_		-			
N 4 f4 DISTANCE FROM OBSERVER	START 4	H STOP HH N FROM OBSERVER	10					40		-		
DISTANCE FROM OBSERVER	DIRECTIO	N FROM OBSERVER	11					41				
START 35 1 STOP 351	START	A0° STORADO°	12					42				
START NA	STOP	NIA	13					43				
EMISSION COLOR		PE: CONTINUOUS [14					44				
START NA STOP		DROPLET PLUME:	15					45				
WATER DROPLETS PRESENT: NÔ∰ YES☐		ED DETACHED	16					46				
POINT IN THE PLUME AT WHICH QPA			17					47				
START 4 ft about ground	STOP	same	18					48		_		
DESCRIBE BACKGROUND()	OTOD	C01.00 D	_			_		_	_			-
START (VLUV 1) (1) BACKGROUND COLOR	STOP SKY CONI	SOMP.	19				-	49		-	-	-
START (VIM STOP ONLY	START	OUTIONS VILLASTOP SOUND	20					50		-		
I WIND SPEED 0	WIND DIR	ECTION	21					51				
START STOP	START WET BULE	S STOP S	22					52				
START SOF STOP 39'F	WEIBULE	3 TEMP RH.percent	23					53				
			24					54				
Source Layout Sketch		Draw North Ayow	25					55				
l s	Emission	Point (26					56				
	 	- ×	27					57				
///	11.		28					58				
Observers Position	N35f	+	29					59				
	32		30					60				
\1,	10°		AVERA	GE OPA	CITYF					READIN		OVE
Sun Loc	ation Line		HIGHES			0			0	% WERE	<u> </u>	
Kov	B	enco:ex	RANGE	OF OP	MINI		Ö		MAXII	мим (C	
Key ☆ Sun < Plume V		OBSER	VER'S I									
COMMENTS .	.1	OBSER	VER'S	SIGNAT	URE	SN		DA	3/20/	n nia)	
No emissions	P(),	ORGAN	IZĄTĮO	<u> </u>	MILL	<u>)</u>			2 1/20	۲۰۱۰		
LHAVE RECEIVED A COPY OF THES	I HAVE RECEIVED A COPY OF THESE OPACITY OBSERVATIONS								DA'	TE ,	1	
SIGNATURE	_ 0.7.0111		CERTIF	ARV	DVME-	t				10/11	20	18
TITLE		DATE	VERIFI	ED BY:					DA	I E		

Visible Emissions Observation Form

SOURCE NAME Calumet River	inat	OBSERV 3/2	O 2	DATE			TTIME	n	STOP 12:0	TIME OG PN	1	
Calumet River ADDRESS 19740 South B	uney	Ave	SEC	0	15	30	45	SEC	0	15	30	45
	0		1	0	0	D	0	31				
CITY	STATE	ZIP	2	0	0	Ö	0	32				
CHICACYP	الما	1"40417	3	0	0	D	0	33				
PHONE 0	COUDCE	D NUMBER	4	Ö	0	D	0	34				
PROCESS EQUIPMENT ROOF VENT - 2nd from for CONTROL EQUIPMENT		N A OPERATING MODE	5	0	ŏ	0	0	35		-		
Part Newto - and from for	nt	Normal	6	0	1	0	0	36				
CONTROL EQUIPMENT	111	OPERATING MODE	-		2		6	-				
1 10		NA	7	0	0	0	U	37				-
START ROOF VINT - 2mm NOM	front	.10	8			_		38				
THEIGHT ABOVE GROUND LEVEL	HEIGHT R	ELATIVE TO OBSERVER	9					39				
N 15 felt DISTANCE FROM OBSERVER	START 7	5H STOP 75H	10					40				
DISTANCE FROM OBSERVER	DIRECTIO	N FROM OBSERVER	11					41				
START \$ 500 FF STOP \$ 500 FF	START /	HIP STOP 2418	12					42				
START NONE	STOP	None	13					43				
EMISSION COLOR	PLUME TY	PE: CONTINUOUS	14					44				
START N A STOP WATER DROPLETS PRESENT:		DROPLET PLUME:	15					45				
NOW YES		DROPLET PLOME:	16					46				
POINT IN THE PLUME AT WHICH OP	ACITY WAS	DETERMINED	17			_		47				
START VIDER ODON STOCK	T VIDE OF STOP SOME							48	-			
DESCRIBE BACKGROUND	\$TOD	CA144 A	18					49				
START GIVY CLOUDS BACKGROUND GOLOR	SKY CON	SAWE.	19	-			-	_				
START ON STOP OF COMMIND SPRED	START 0	NV STOP	20					50			_	-
WIND SPINED)	WIND DIR		21				_	51				
START	START WET BULE		22					52				
START 34°F STOP 34°F	WET BOLK	TCMP TVI .percent	23					53				
Source Layout Sketch			24					54				
Source Layout Sketch		Draw North Arrow	25					55				
6	Emission	Point	26					56				
	\mathcal{N}	\sim 3	27					57				
	1 1		28					58				
Observers Position	1 m/500	Et .	29					59				
	201	0.000	30				1	60				
12	10°		AVERA	GE OP/	CITY F	OR	L	NUMBI		READIN	GS ABO	OVE
Sun Loca	ation Line	vercast	HIGHES		and the same of the same	0		10		% WERE		
	0	ACITION	RANGE	OF OP	ACITY F		GS		MAXII	AL INA	0	
Key ☆ Sun < Plume → V	Vind		OBSER	VER'S I			U		171/7/311			
COMMENTS		OBSER	VER'S	SIGNAT	URE	_		DAT	Ę ,			
No emissions of		OBSER	UN.	mi	®				20	2019		
		ORGĂN	(E	Č								
I HAVE RECEIVED A COPY OF THES	CERTIF		met				DA ¹	lio!	2018			
TITLE	IGNATURE DATE								DA			

OEC Project # 180-347

Civil & Environmental Consultants, Inc.

EPA Method 9 pursuant to 35 IAC 212.109 for roadways

SOURCE NAME CALLMET RIVEY THIN	nal	10	9	σ	7	6	2	4	ω	2	_	Truck Sec	Sp.
ADDRESS 10740 South Burley	N.P										0	0	Observation Date
10140300HN BUYKY	NVC									- 10	0	25	on Dc
CITY STATE	ZIP										0	10	ite
PHONE SOURCE	U0617											15	-
	A											20	125
HOW TYNICKS VOODS CONTROL EQUIPMENT	OPERATING MODE											25	2019
CONTROL EQUIPMENT	OPERATING MODE											30	919
Watering young DESCRIBE EMISSION POINT	MANARA											35	
START ROOD & THE WHILLS HEIGHT ABOVE GROUND LEVEL HEIGHT R	ELATIVE TO OBSERVER	_										40	
A CA START A	STOP HANNER STOP HANNER				-				_			45	
START ~ 40 1 STOP ~ 40 1 START 3	STOP 316						-					50	
DESCRIBE EMISSIONS START N STOP	NB	\vdash										55	
EMISSION COLOR PLUME TY	PE: CONTINUOUS			_		_							Stc
WATER DROPLETS PRESENT! IF WAITER	DROPLET PLUME:										200	Total of Opacity Readings	Start Time
POINT IN THE PLUME AT WHICH OPACITY WAS	ED DETACHED DETERMINED											of iity	
START 4 A WOULD COUNT STOP.	some pt.											Re	0:0
START A CU W (III) STOP BACKGROUND COLOR SKY CONE	same on the same										B	Number of Readings	0
												gs	
	STOP CALLY STOP STOP SW											0 \$	
START VISMON STOP VISMON START S	3 TEMP RH.percent									٠.	03/	Average Opacity	
START 78° STOP 78°										(0)	- 10	≺ e	
Source Layout Sketch	Draw North Arrow							Start time	Start time	Start time:	Start time:	Cor	End Time
Emission	n Point							time:	time:	time:	time:	Comments	ime
											Q	ents	0
Observers Position	74									9	2		0
											*		_
1902													
Sun Location Line													
Key		OBS	ERVE	R'S N/	AME (F	RINT	<u> </u>						L.,
★ Sun < Plume → Wind		Y	Sext	J W	illi	an				LDA	TE		
only I truck available to read a	ul day	B	Uh	m	ME (F	ج				DA		12019	
ing emissions observed	8	ORG	CE	MOLLE									
THAVE RECEIVED A COPY OF THESE OPACITY SIGNATURE	OBSERVATIONS	CER	TIFIED	BY:	1					DA	TE	1119	
TITLE	DATE		A-EM		/					DA		111	
	1												

CEC Project # 180-367

Visible Emissions Observation Form

Calumnet Ri	ver Fer	minal	OBSER	6 25	201°	9	STAR	14 AV	M	STOP	TIME):20	Am
Calumet Right Address 10740 South	1 Burt	4 Ave	SEC	0	15	30	45	SEC	0	15	30	45
		il.	1	0	0	0	0	31				
CITY	STATE	ZIP	_ 2	0	0	0	0	32				
Cnicago	IL	40617	3	ñ	Õ	0	Ŏ	33				
773 · 221 - 5500	SOURCE	D NUMBER	4	6	1	0	D	34				
PROCESS EQUIPMENT	10	OPERATING MODE	5	0	10	10	0	35				
Front-door to storage b	niloling	OPERATING MODE	6	0	Ö	O	0	36				
	J	N/A	7	0.77				37				
DESCRIBE EMISSION POINT	9000 40		- 8					38				
BTART PHY door 10 S10	rage m	ulding	9					39				
NAFF	START 4	ff stop 4 ft	10					40				
DISTANCE FROM OBSERVER	DIRECTIO	N FROM OBSERVER	11					41	,			
START HOFF STOP 40 FF	START 3)	STOP316°	12					42				
START NB	STOP	NIA	13					43				
MISSION COLOR		PE: CONTINUOUS [14					44				
START NA STOP WATER DROPLETS PRESENT:		DROPLET PLUME:	15					45				
NO YES□	ATTACHE	D DETACHED	16					46				
POINT IN THE PLUME AT WHICH OP	DETERMINED	17					47					
START H & COOK GOUND	same	18					48					
START WWW WOULD	TOWAY STOP SOME							49				
BACKGROUND COLOR	SKY CONE	ITIONS	19					50				
STARTOPUL STOPWEY	WIND DIRE	OV STOP CLOV	21					51				
START 15mph STOP 15mph	START 5		22					52				_
MBIENT TEMP	WET BULE		23				-	53	_			
START 78°F STOP 18°F			24					54			-	
Source Layout Sketch		Draw North Arro						55				_
M :	X Emission	Point	26	_				56				_
	-1		27	-			-	57		-	_	
	40 F4		28				-	58	_	-		_
Observers Position			29					59				_
X	5		30	-		-		60				-
(1)	100		AVERAG	SE OPA	CITY FO	OR o	,	NUMBE	R OF F	READING	GS_ABC	VE
Sun Let	mon Line		HIGHES			~0%		11	0 %	WERE	O	
			RANGE	OF OP	CITY R		ss t	5%	MAYINA	им Т	1%	
≺ey ≱ Sun	OBSER	VER'S N	AME (P			<i>3</i> /0	MICAVIIA	OIVI (, 10			
OMMENTS	OBSERV	ER'S S	IGNATU	JRE			DATE					
no emissions	ORGANI	ZATION	MW	elicu)		<u> 1</u>	125/	2019	5		
HAVE RECEIVED A COPY OF THESI SIGNATURE ITLE									DATE	111/2	019	
	DATE		MOYS					DATE				

CEC Project 180-367

Visible Emissions Observation Form

SOURCE NAME COLUMNEL RIVER	Termin 1	OBSER	VATION	DATE 2019		STAR	70		STOP :	TIME 36	
Calumet River ADDRESS 10740 South	1 Bouden Dile	SEC	0	15	30	45	SEC	0	15	30	45
10110 3000	DWIGHT	MIN 1	0	0	D 20	Ö	31	Ť	-10	- 00	10
		2	0	0	N	0	32				
Chicago	STATE ZIP	3	X	0	8	2	33				
CHONE	COURCE ID NUMBER	_	7	0	5	7	34	-		-	
713- 221- 5300	NA	4	X	5	Ď-	K	_				
		5	7	~	0	Ų.	35				
Back door to storage control equipment	OPERATING MODE	6	0	D	Q	p	36			_	_
NIN	Аи	7					37				-
DESCRIBE EMISSION POINT	omen smildings	8					38				
START BACK door to St HEIGHT ABOVE GROUND LEVEL	THEIGHT RELATIVE TO OBSERVER	9					39				
DISTANCE FROM OBSERVER START 2017 STOP 2017	START 41 STOP DIRECTION FROM OBSERVER START 30 STOP 30	10					40				
DISTANCE FROM OBSERVER	DIRECTION FROM OBSERVER	11					41				
DESCRIBE EMISSIONS	ISTART 30 _ STOP 30 _	12					42				
START N/A	STOP NIA	13					43				
EMISSION COLOR	PLUME TYPE: CONTINUOUS	14					44				
START N T STOP N A	IF WATER DROPLET PLUME:	15					45				
NOT YES -	ATTACHED DETACHED	16					46				
POINT IN THE PLUME AT WHICH OP	ACITY WAS DETERMINED	17					47				
DESCRIBE BACKGROUND		18					48				
START and building door	stop Saml	19					49				
START Gray building door BACKGROUND COLOR	SKY CONDITIONS	20					50				
START ARM STOP (ARM	START () POY STOP () S	21					51	_			
STARTISMEN STOP SWAND	START SW STOP SW	22			-		52			-	
START SMPH STOP ISMITH	WET BULB TEMP RH.percent						53			-	
START 78°F STOP 18°F		23	-								
Source Layout Sketch	Draw North Arrow	24					54				
	Λ_	25	_		-		55		-		
	X Emission Point	26					56				
////		27					57				
Observers Position		28					58				
\ \	2	29					59				
	1	30					60	000	VE 4 D.W.	00.400	
~	100	AVERAGE HIGHES			196		NUMBE		6 WERE	- 7	VE
Sun Loca	ationkine	RANGE		ACITY F	READING	GS		<u></u>	372.76		
Key	- JA				иим (00		MIXAN	nw D	16_	
Sun ✓ Plume ✓ V	Vind	OBSER*	VER'S N	Mil	PRINT)	١					
COMMENTS		OBSER	VER'S	SIGNATI	URE			DAT	ارما	0.00	
no-emissions of	OSENJEG				lieu	١			125	2019	
		ORGAN	C	N.							
I HAVE RECEIVED A COPY OF THESI	E OPACITY OBSERVATIONS	CERTIF	ED BY:					DAT	E		
SIGNATURE	[70: 1 mm		YOYH	4				1		2019	
TITLE	DATE	VERIFIE	ED BA:					DAT	_		

CEC Project # 180-367

Visible Emissions Observation Form

SOURCE NAME COLUMNET RI	iver Te	rminal	OBSER	ATION			STAR	S) AV	\	STOP	TIME 5:57	AM
ADDRESS 10740 Sou			SEC	0	15	30	45	SEC	0	15	30	45
			1	0	0	0	\mathcal{O}	31				
GUTS/	Lowere	1700	2	Č	D	ŏ	ñ	32				
Chicago	STATE	100617	3			0	ă	33				
PHONE (D NUMBER		- <u>V</u> -	Ď		0	-				
173-221-5300 PROCESS EQUIPMENT	N	₽.	4	D	0	0		34				
PROCESS EQUIPMENT		OPERATING MODE	5	0	0	Q	D	35				
Building Roof Vent		Normal OPERATING MODE	6	0	0	0	0	36				
N A		N A	7					37				
DESCRIBE EMISSION POINT	20- 7/2-0		8					38				
START KOOF VENT - 2md -	from fra	ont .	9					39				
	HEIGHT R	ELATIVE TO OBSERVER	10					40				
N 75 fe4+ DISTANCE FROM OBSERVER	START 7	5ff STOP 75ff	11					41				
START SOUL STOP 500 F	START 2	100° STOP 2100°			-		-					
DESCRIBE EMISSIONS		1	12			_		42				
START NA	STOP	NA	13					43				
START NA STOP NA		PE: CONTINUOUS INTERMITTENT	14					44				
START NA STOP NA WATER DROPLETS PRESENT:		DROPLET PLUME:	15					45				
NOTE YES	ATTACH	ED DETACHED	16					46				
POINT IN THE PLUME AT WHICH OP			17					47				
START 10ff above stude	STOP	Source	18					48				
DESCRIBE BACKGROUND	STOP	< 0.1001	19					49				
BACKGROUND COLOR	SKY CON	SUMU	_			-				-		_
START MUL STOP MALO	START	MW2 POTE VA	20				<u> </u>	50				
WIND SPEED	WIND DIR	ECTION	21			_		51				
START Smph STOP Swph	START &	STOP SAME	22					52				
START 790 F STOP 790 F	MELBOLE	TEMP RH.percent	23					53				
			24					54				
Source Layout Sketch		Draw North Arrow	25					55				
	& Emission	Point .	26					56				
_ r	N	S	27			-		57	-			
_/						-	-	-		_		-
Observers Position	1 1 1	500F1	28			-	-	58				_
\		24-71	29			_	_	59				
	St.		30		-17			60			00 400	
< 	100		AVERAC HIGHES			O %		NOWBE		READIN % WERE		IVE
Suntoc		RANGE					1 17)	70 WEINE	0		
Key				MINII		09	D	MAXIN	NUM Q	To		
X Sun < Plume → V		OBSER	VER'S N	YAME (I	PRINT	١						
COMMENTS		OBSER	VER'S	SIGNAT	URE	1 7		DAT		1	_	
NO EMISSIONE OB		400	HUB	rele	_0_				1/25	120	19_	
		ORGAN	EC	N						350	•	
I HAVE RECEIVED A COPY OF THES	HAVE RECEIVED A COPY OF THESE OPACITY OBSERVATIONS								DAT	Ful	2019	
TITLE		DATE	VERIFIE	ED BY:	101				DAT			

CEC Project # 180-367

Civil & Environmental Consultants, Inc. EPA Method 9 pursuant to 35 IAC 212.109 for roadways

SOURCE NAME					_	-	-	-	_	r		~	m 1	
Calumet Ri	ver Ter	rminal	10	9	∞	7	6	5	4	ω	2	-	Truck Sec	Obse
ADDRESS 10740 South	Rudea	Ave							0	0	0	0	0	Observation Date
10110 300.11	241.0-							l l	0	0	0	7	5	žn Da
CITY	STATE	ZIP							0	0	0	0	10	ਰੰ
Chicago	11_	40617			_								1.5	م
773- 221-5300	SOURCE	D NUMBER	_	-		-							20	Ā
PROCESS EQUIPMENT HOW THUKS EVOACS CONTROL EQUIPMENT		OPERATING MODE	-		-	-	-	-	-			_) 25	
CONTROL FOURMENT	<u> </u>	OPERATING MODE				_	_		_			_		12019
road watering		normal											30	ا هـ ا
DESCRIBE EMISSION POINT	a) 00 8¢												သွ	
START ROOM TUNK	WWW	ELATIVE TO OBSERVER											40	1
A FL	START 4		_			_	_				_			- 1
DISTANCE FROM OBSERVER START 40 (2 STOP 404)	DIRECTIO	N EROM OBSERVER											45	
START 40 (2) STOP 4044	START	O STOP											50	
DESCRIBE EMISSIONS START NOVE	STOP	Nove			_	$\overline{}$							55	1
EMISSION COLOR	PLUME TY	PE: CONTINUOUS		-		-	_	_	_	-	-			S
START NA STOP NA	FAR PAVE	☐ INTERMITTENT ☐								0	0	0	이 아이를	Start Time
WATER DROPLETS PRESENT:		DROPLET PLUME: ED ☐ DETACHED ☐											Total of Opacity Readings	ime
POINT IN THE PLUME AT WHICH OP	ACITY WAS	DETERMINED											as < f	9:12
START Aff WOOLE ground	STOP	Same			,								~ Z	27
DESCRIBE BACKGROUND	WASTOR	COLVOL			,				W	S	W	S	mb adi	\ <u>`</u>
DESCRIBE BACKGROUND START GRUWUL EARPMING BACKGROUND COLOR	SKY CON	DITIONS							l	1			Number of Readings	AM
STARTON OF STOP STOP STOP STOP	STARTYO	CLOSA STOP STAME	_		_	-			_	├	_	_	- -	1
	WIND DIR	ECTION								0	0	0	_0 ≱	
START Now STOP (0/M	START S								00	Co	0%	2	Average Opacity	
START TIPE STOP 810F	WE! BOLL	TENI TA I POPOGIA							0	١			ge i†y	
Source Layout Sketch		Draw North Arrow							क्ष	Sta	Sta	Sta	7 0	Ę,
		\sim 1							Start time	Start time:	Start time:	Start time: 9:22.4	H trucks. No	End Time
1 1 05 0	K Emission	Point							le:] E.] ē.	ne:	I me	l ē
1,	П										0	-0	S ints	=
Observers Position	1								5	1	10:02	13	Z	i
	П								50			*	20	W
	97~								B	3	3	3 ,	3.	*
	<u> </u>								Γ	P	-	}	286	13
Sun Loc								1	1	1	1	10		
Kov								1	1			24		
Key ☆ Sun < Plume → V		OBS			AME (_						
A AL MARKET			OBS	ERVE	RSS	O N	URE	MA	1		TDA	TEI	1	
COMMENTS	ONS	observed	7	34	M-	M	U	92				9/19	9/19	
11,0000		5	ORG	ANIZ	ATION									
I HAVE RECEIVED A COPY OF THES	E OPACITY	OBSERVATIONS	CER	U1 TIFIE	DBY:						DA	TE		_
SIGNATURE			A	10V3	net	•					4]	10/20	9	
TITLE		DATE	VER	IFIED	BY:						DĀ	TE		
1														

Visible Emissions Observation Form

SOURCE NAME			OBSER	MOLTAN	DATE		STAR	ГТІМЕ		STOP	TIME		
address 10740 South Br	Termir	ial		9	19	2019			:33 AV	n	9:	39	
10740 South B	Mey A	VK.		SEC	0	15	30	45	SEC	0	15	30	45
				1	0	D	0	0	31				
CITY	STATE	ZIF		2	0	Ō	0		32				
Chicago	I IL	-"(10017	3	0	0	Õ	0	33				
IPHONE		D NUMBER		4	b	0	0	Ď	34				
773-121-5300		NIA		5	Ö	0		0	35	-			
PROCESS EQUIPMENT		OPERATIN			_		0	8	36			_	
Building Roof Vent		OPERATION	IG MODE	6	0	0	D		-	-			
N A DESCRIBE EMISSION POINT		N	A	7					37				
START ROOF VENT - 2Nd	forms -	Amada		8					38				
HEIGHT ABOVE GROUND LEVEL	HEIGHT DI	TI ATIME TO	OBSERVER	9					39				
№ 76 f4 DISTANCE FROM OBSERVER	START	5ft sto	OP 16-P	10					40				
	DIRECTIO	N FROM OB	SERVER	11					41				
START 500 FF STOP SAME	START 2	8° sto	DP 248	12					42				
START NONE	STOP	None		13					43				
EMISSION COLOR	PLUME TY	PE: CONT	INUOUS 🗌	14					44				
START NA STOP NA		☐ INTERM		15					45				
WATER DROPLETS PRESENT:		DROPLET F							46		-		
POINT IN THE PLUME AT WHICH OP		DETERMIN		16 17					-	_			
START ~ 10 ft a ball which	LUME AT WHICH OPACITY WAS DETERMINED STOP SOME								47				
DESCRIBE BACKGROUND				18					48				
BACKGROUND COLOR	STOP	some	Aly clouds Same	19					49				
START BULL STOP BULL	SKY CONL	NO STO	JESON O	20					50				
WIND SPEED	WIND DIRE	ECTION	2011	21					51				
START Smoh STOP Smoh	START S	W STO	OP SW	22					52				
	WET BULE	TEMP	RH.percent	23					53				
START 710F STOP 710F				24					54				
Source Layout Sketch		Dra	w North Arrow	25					55				
Ι ,	√ Emission	Point	0									_	
- £	F	Foint	0>	26					56				
	4504	Υ		27					57	_			
Observers Position	()			28					58				
\	11	1		29					59				
	5			30					60				
- K-14				AVERAGE HIGHES			OR N		NUMBE		READIN % WERE	-	VE
Sán Loca	ation Line			RANGE			READING	GS	10		70 VVENE	- 0	
Key					Ö	MININ			D	MAXIN	1UM		
	✓ Plume → Wind						PRINT	_					
COMMENTS				OBSER	VER'S S	IGNATI	JRE			DAT	Elal		
No emissions		ORGAN	JAV.	1		<u> </u>		10	191	14			
					CI	<u>.C</u>							
I HAVE RECEIVED A COPY OF THESE SIGNATURE	OPACITY	OBSERVAT	TONS	CERTIF	IED BY:		-			DAT	10	19	
TITLE		DATE		VERIFIE	D BY;					DAT			

CEC Project # 180-367

Visible Emissions Observation Form

SOURCE NAME	r Tern	inal		OBSER	VATION	DATE		STAR	TTIME	100	STOP	TIME 26 p	lun.
Callimet River ADDRESS 10740 South B	de	Aue		SEC					SEC	0	15		
10170 3000 T	uriag	MAC		MIN	_	15	30	45	MIN	- 0	15	30	45
				1	Ď	0	D	D	31				
Chicaen	STATE		P 0 (0) 7	2	0	0	Ö	0	32				
Chicago		D NUMBER	20617	3	D	0	0	D	33				
773- 221- 5300 PROCESS EQUIPMENT	N	Y		4	0	0	0	0	34				
PROCESS EQUIPMENT		OPERATI		5	0	0	0	0	35				
Front door to storage b	ilday.	Nor	mal	6	D	0	0	0	36				
CONTROL EQUIPMENT		OPERATI	NG MODE	7					37				
DESCRIBE EMISSION POINT		10 1		8					38				
START ENTRY door to store	age bold	9		9					39				
HEIGHT ABOVE PROUND LEVEL	HEIGHT R	ELATIVE TO	OBSERVER	10				-	40		_		
~4ft DISTANCE FROM OBSERVER	START .	4/1- ST	OP 4 17			-		-	\vdash		_	-	
START NANT STOP	START 3	SO ST	OP3590	11					41				
DESCRIPF FMISSIONS		٥١	55	12					42				
START / NOVE	STOP	None	IINUOUS 🗖	13					43				
EMISSION COLOR	PLUME TY	PE: CON	TINUOUS 🗖	14					44				
START N A STOP N A WATER DROPLETS PRESENT:	IF WATER	DROP(ET	MITTENT DILIME:	15					45				
NO YES□		ED DET		16					46				
POINT IN THE PLUME AT WHICH OP	ACITY WAS	DETERMIN	NED	17					47				
START ~4FF assurance	STOP	same		18					48				
LDESCRIBE BACKGROUNDI		Sour	.				-		-			-	
START OWN VICEN WOULD	SKY CONI	DITIONS DO	with cloudy	19				_	49		-	_	
START WIND SPEED STOP SOME	START 3	TS of	op same	20				_	50				
WIND SPEED	WIND DIR	ECTION	0. 1	21					51				
START & Smoth STOP SUM!	START S	ST.	OP SW TRH.percent	22					52				
START 75° F STOP SWILL	WE I BULE	LEIMP	RH.percent	23					53				
9 7	-		L	24					54				
Source Layout Sketch	I	Dra	w North Arrow	25					55				
////15	Emission	Point	\bigcirc	26			-		56				
////	11	-		27					57				
	1	د.	A.07						-				
Observers Position	1 40f			28					58				
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	5]			29					59				
1	10"			30	05.004	OUTS / E/		L	60	D OF I	DE A DINI	20.400	V/5
<i></i>	-XL-			AVERAC HIGHES		En.)K		NOMBE		READIN		VE
Sun Loca	ationLine			RANGE			EADIN	GS			7		
Key	5/V							O_{-}		MAXIN	IUM ()	
COMMENTS	MAMERITO									DAT	E /		
NO FUM RYDOR (OBSERV	Mess	M	D	Ð		9	19	19			
1300		ORGÁN	IZATIO	V A					1				
THAVE RECEIVED A COPY OF THESE	HAVE RECEIVED A COPY OF THESE OPACITY OBSERVATIONS									IDAT	E		
SIGNATURE	_ SI AGIFT	OBOLINA	.10110	CERTIF	Afr	DMO	t			174	10/2	-019	
TITLE		DATE		VERIFIE						DAT	Ė		

OEC Project # 180-367

Visible Emissions Observation Form

Source NAME Calumet River Terminal			OBSER	VATION	65	START TIME			STOP TIME			
ADDRESS 10740 South Buy			SEC	0	15	30	45	SEC	0	15	30	45
	•		1	0	17	0	0	31				
CITY	STATE	ZIP	2	0	0	0	0	32				
Chicago	11	60617	3	0	0	0	0	33				
773 - 221 - 5300		NUMBER	4	0	0	0	0	34				
PROCESS FOLIPMENT		OPERATING MODE	5	0	Ō	0	0	35				
Storage building-be	rkdoor	OPERATING MODE	6	0	0	0	D	36				
CONTROL EQUIPMENT		N A	7					37				
DESCRIBE EMISSION POINT		12	8					38				
START BACK COOK TO STORA	ge buil	ding/	9					39				
HEIGHT ABOVE GROUND LEVEL HEIGHT ABOVE GROUND LEVEL	START A	IFF STOP HFF	10					40				
DISTANCE FROM OBSERVER	DIRECTIO	N FROM OBSERVER	11					41				
START 2014 STOP 2014	START 3	30° STOP 330°	12					42				
DESCRIBE ÉMISSIONS START NON. I.	STOP	None	13					43				
EMISSION COLOR	PLUME TY	PE: CONTINUOUS [14				1	44				
STARTINIA STOPNIA	FURTHE	□ INTERMITTENT □	15			1		45				
WATER DEOPLETS PRESENT:		DROPLET PLUME: ED	16			-	-	46		-		
POINT IN THE PLUME AT WHICH OP			17		_			47		1		
START AND A MONTH (MONTH) DESCRIBE BACKGROUND	STOP	sime	18		-	+-	-	48	-			
DESCRIBE BÁCKGRÓUND	etop.	some	_					49		-		
START RIG WAYWOULD	SKY CONE	TOWNS WORKING	, 19	-	-	-		50				
STARTING STOP SUM	START 7	ons parky count	20		-	1	-			-		
WIND SPEED	I WIND DIR	ECTION IE STOPNE	21			-	-	51		-		-
START 10 mbh STOP STARL	WET BULE	TEMP RH.percent	22	-	-		_	52		-		
START TUOK STOP 770F		s elevir	23			 		53		-	-	-
Source Layout Sketch		Draw North Arrow	24		-			54			-	-
Îr	7	\sim 1	25			-	-	55				-
N.	Emission	Point	26					56				
ű.	11 1.		27					57				
Observers Position	N 2017		28					58				
\	4		29					59				
	~		30			<u> </u>		60			<u> </u>	
	- - 8		AVERA HIGHES			OR		10.0		READIN % WERI	-	OVE
Sun Loo	ation Line		RANGE			READIN	GS			70 11211		
Key	113,121				,	MUM		0	IIXAM	MUM		
\$\text{\$\text{\$\text{\$\text{\$Y\$}}}} \text{Sun}	Vind_		OBSER	VER'S	NAME (PRINT	lian					
COMMENTS			OBSER	VER'S	SIGNAT	URE			DA	TE.	1	
NO JWISSOK	nsok	erred	OBSER			KU	<u> </u>		0	1 1g	2019	<u> </u>
			ORGAN	OF.	Č							
HAVE RECEIVED A COPY OF THES	E OPACITY	OBSERVATIONS	CERTIF			اما			DĄ	Fin	٠ ١٠	
SIGNATURE		IDATE	Alvomet 410 201						1501	1		
TITLE		DATE	VERIFI	ED R.I.					I DA			

CEC Project # 180 367

Civil & Environmental Consultants, Inc.

EPA Method 9 pursuant to 35 IAC 212.109 for roadways

SOURCE NAME			1									ľ	Truck	
Calumet Kiver Terminal			10	9	Φ.	7	6	5	4	ω	2		Sec	Observation Date
ADDRESS 10740 Stouth Brunley Ave												0	0	rvatio
13 / 10 / 250-11 /	7,1,10											0	5	on D
			\vdash									0	10	ate
CWago	STATE ZI	40617	_			-	_					0		
PHONE 200 Can													15	<u>7</u>
773-221-5300	NIA	110 110 11											20	31
PROCESS EQUIPMENT HOLL TRUCKS 1/2 000	I OPERATII	NG MODE											25	12/18/2019
CONTROL EQUIPMENT	OPERATION		\vdash		-			_		-			30	일
DESCRIBE EMISSION POINT	inwinter way	rmaj				_						<u> </u>		اعـ ا
START ROOK & THUCK	wineels												35	
HEIGHT ABOVE GROUND LEVEL	HEIGHT RELATIVE TO	O OBSERVER											40	
NH	START HE ST	OP 4H	\vdash										4	
START HOLL STOP HOLE	DIRECTION FROM OF START 3060 ST		-									<u> </u>	υ	
DESCRIBE EMISSIONS	START TO ST	01 21.3											50	
START WOVE	STOP WY	u-											55	
START NA STOP NA	PLUME TYPE: CONT												Z 0 1	Sto
	IF WATER DROPLET		1									0	Total of Opacity Readings	Start Time
NOD YES□	ATTACHED DET												of city	m _e
POINT IN THE PLUME AT WHICH OP	CITY WAS DETERMIN		<u> </u>			-			_			-		
DESCRIBE BACKGROUND	STOP Sam	L .										S	Number of Readings	(CD)
START COOLUN WYLLI	STOP (Well	uxall										8	Number o Readings	8
BACKGROUND COLOR	SKY CONDITIONS												r of gs	8:05AM
WIND SPEED STOPENCY	WIND DIRECTION	OP CUUT												3
START COUM STOP COUM	START NA ST	OP N IT										Q	\ver Opc	
AMBIENT TEMP	WET BULB TEMP	RH.percent										Orto	Average Opacity	
START 15 F STOP 16 F												_	- 0	
Source Layout Sketch	Dra	w North Arrow							Star	Start time	Start time	Start time:	3 0	End Time
1 (000)	Emission Point	α							Start time	ttim	t tim	T T	Comments Only Istruck of	뒭
, , , , , , , , , , , , , , , , , , , ,)								Œ.	<u>.</u>	œ.	ē	The me	
	14097											9	St uts	88
Observers Position	1401,											9.0	2	
	5											2	₩.	RRY
14	7											SAM	l Q	
<i></i>	ation tamp											لسب	voilable	
Suil Loca	non kub.												٦	
Key	(181)		OPE	EDVE	R'S NA	NAST /E	DIAIT							L
⇒ Sun □ Plume → W	/ind		063	BP	th	'nÑ'	lio	n						
COMMENTS	Ver	·	OBS	ERVE	R'S 816	GNATI	JRE /	8			DA	TF 1	n look	0
only I truck	avculable -	10	CODE	A	Der		للع			_		-	8/201	ĭ
THAVE RECEIVED A COPY OF THESE OFFICTY OBSERVATIONS			UKG	CIVIL	1 \$	FIN	MY	me	nta	(1)	154	Hav	its, lvy.	
I HAVE RECEIVED A COPY OF THESE	OPACITY OBSERVAT	TIONS	CEB	TIEIEC	D RV		,,,,,,		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.	DA	510	Lo	
SIGNATURE			1 ((0.00)	ALV	UM-	ct							117	
TITLE	DATE		VER	IFIEU I	DY:						DA	IC		

Visible Emissions Observation Form

address 10740 South Burley AV-C		OBSER	VATION 18/	2019		STARTIME LOW			STOP TIME			
ADDRESS 10740 Smuth	Bruvley	y Axel.	SEC	0	15	30	45	SEC	0	15	30	45
77.71	- VIII. (3	11110	1	6	0	٥	0	31		,,,		
	Lorine	Contract	2	0	0	0	0	32		-	_	
Chicago	STATE	40617	3	_		0	0	33	_	-		
	SOURCE	ID NUMBER		0	0		-	_		-		_
773-221-53:00	N	IA	4	0	0	0	0	34				-
PROCESS EQUIPMENT	Dav	OPERATING MODE	5	0	0	0	0	35				
Storage Blocy. Back	2001	OPERATING MODE	6	0	0	0	0	36				_
NIA			7					37				
DESCRIBE EMISSION POINT	امام د ، م	,	8					38				
START back door to story	VOC VOVOE	ELATIVE TO OBSERVER	9					39				
HEIGHT ABOVE GROUND LEVEL		4f STOP 4ft	10					40				
DISTANCE FROM OBSERVER	DIRECTIO	N FROM OBSERVER	11					41				
START 3614 STOP CAME	START 3	5° STOP3150	12					42				
	CTOD	N 47 15	13	1				43				
START NOVE EMISSION COLOR	PLUME TY	Now-	14	_			 	44	-			_
START NIA STOP NIA	KHAKIVE	☐ INTERMITTENT ☐					-					
WATER DROPLETS PRESENT:		DROPLET PLUME:	15	-			-	45				
NÔ YES □ POINT IN THE PLUME AT WHICH OF		ED DETACHED	16					46				_
			17					47				
START HEL A DON'T COMM	100	1111 anne Grister	18					48				
START OVER building		greymolg	19					49				
BACKGROUND COLOR START OYUK STOP AKEU	SKY CON	INV STOPCLIAV	20					50				
WIND SPEED	WIND DIR		21					51				
START 10MPh STOP 10MPh	START		22					52				
AMBIENT TEMP START 15°F STOP 16°F	WET BULE	3 TEMP RH, percent	23					53				
			24					54				
Source Layout Sketch		Draw North Arrow	25					55				
L.	X Emission	Point A	26				-	56		-	_	
22.6	Financia		_		-			57				_
3547	1	Al	27		_		-					
Observers Position			28	-	_		-	58				_
*	<u></u>		29				1	59				
	100	≥ 200	30					60				
	ion Line		AVERAGE HIGHES			OR		NUMBE		KEADIN 6 WERE	_)VE
7			RANGE	OF OP								
Key	V 1		OBSER	VED'S N	MININ JAME (E		0		MAXIN	UM C)	
Sun	Vind		ODSER	BRH	MY C	11110	n					
COMMENTS		1	OBSER!	VER'S	SIGNATI	JRE			DAT	مال.	1- 1	
no emissio	ns obs	crved	4	3 Den	M	u	7		_ _	2116	1201	7_
			ORGAN C'i	VIT	ENV	ivon v	ment	oul Co	nsult	ants	, Inc	3.
HAVE RECEIVED A COPY OF THES	E OPACITY	OBSERVATIONS	CERTIF	IED BY:	· ·					10		
SIGNATURE		DATE	VERIFIE	OM-6	>1				DAT		-	
,,,,,		DAIL .	I A PLYIEIG	0017					I DAI	-		

Visible Emissions Observation Form

Calumet River Terminal				1181	DATE 2019	7	STAR	TTIME 1424	m	n 8:48 Am			
ADDRESS 10740 Sou	oth Bu	rley Ave	SEC	0	15	30	45	SEC	0	15	30	45	
		<u> </u>	1	U	0	D	0	31					
CITY	STATE	ZIP	2	0	0	0	0	32					
chicago	I IL	40617	3	0	Ŏ	0	0	33					
PHONE	SOURCE		4	0	~	~	0	34					
Chicago PHONE 773-221-5300	N	OPERATING MODE	5	Ö	8	13	Ö	35		_		-	
Front door to storage control equipment	re bldg.	nnomal	6	0	0	6	0	36			-	-	
CONTROL EQUIPMENT	0	OPERATING MODE	7	0	0	0	U_	_			-	-	
N A DESCRIBE EMISSION POINT								37				_	
START PINTU GOOV TO	saoroa	e boldar	8					38				_	
HEIGHT ABOVE GROUND LEVEL	HEIGHT RE	LATIVE TO OBSERVER	9					39					
484	START	If STOP HIT	10					40					
DISTANCE FROM OBSERVER		FROM OBSERVER	11					41					
START HOH STOP HOH-	START	5° STOP315°	12					42					
	STOP	none	13					43					
START WOVE	PLUME, TY	PE: CONTINUOUS [14					44					
START NA STOP NA WATER DROPLETS PRESENT:	FUGNINE I	INTERMITTENT	15					45					
NOT YES		DROPLET PLUME:	16					46					
POINT IN THE PLUME AT WHICH OP	ACITY WAS	DETERMINED	17					47					
START HE ALONG GVOUNG DESCRIBE BACKGROUND	STOP	same.	18					48			_		
START A 44 - AGAINAL TO C		20.01				_	_	_	_		_	_	
START arey building BACKGROUND COLOR	STOP SKY COND	ITIONS	19					49		-			
START GALLY STOP ONLY	START (DAY STOPCHAY	20					50					
WIND SPEED	WIND DIRE		21					51					
START 15mph STOP 16mph	WET BULB	W STOP NW TEMP RH.percent	22					52					
START 15°F STOP 15°F	WEI BOLD	Tan paroon	23					53					
Source Layout Sketch			24					54					
= TT		Draw North Arrow	25					55					
	X Emission	Point ()	26					56					
1 1	\Box	\sim	27					57					
_,	640ft		28					58					
Observers Position			29					59					
	D'		30					60		_	_		
18	100		AVERAC	SE OPA	CITY FO	DR			R OF I	READIN	GS ABC	VE	
Sun Loc	allon Line		HIGHES			<u>O</u>		10	9	6 WERE	0		
			RANGE	OF OP	CITY R		SS		NA VIN	O MUI			
Key	11 10		OBSER\	ER'S N			0		IVIMAIIV	IOW U			
$\displaystyle \mathop{igotimes}$ Sun $\displaystyle \;$	Vind			BRH	n m	lilliû							
COMMENTS NA MINISTONS DUSKNED			OBSERV	ER'S S	IGNATU	IRE C	7		DAT	2 19	110		
ND MILES	nons	DAXLASEN	ODCANI	TATION	1						_		
			C'N	114.	ENVI	ON W	renta	1 Con	sulto	ants	Inc.		
HAVE RECEIVED A COPY OF THESE	E OPACITY (DBSERVATIONS	CERTIFI	ED BY:			-1.1		DAT	Tioli	0		
SIGNATURE		DATE	/\{\ VERIFIE	OW.	T				DAT		1		
11 tele	- 1	UATE	AERILIE	DOT					DAT				

CEC Project #180-367

Visible Emissions Observation Form

SOURCE NAME			OBSER				TIME		1 STOP TIME 9:02 AM			
ADDRESS Calumet Riv	er ler	minal	12/18/2019 SEC				8:57 AM 9:02 AM					
10740 South	Burte	y Ave	MIN	0	15	30	45	MIN	0	15	30	45
			1	0	0	0	D	31				
CITY	STATE	ZIP	2	9	0	0	6	32				
Chicago	11	["LOULE 17	3	><	n	Ö	X	33				
DHONE /	COLIDOE	D NUMBER	4		_	Ö	0	34				_
773-221-5300	NA	V		8	()							
773-221-5300 PROCESS EQUIPMENT ROOF VENT-2nd from	Lant-	OPERATING MODE	5		\circ	0	0	35		_		
CONTROL EQUIPMENT	I CALL	OPERATING MODE	6	0	0	0	0	36				
NIA		or Extrino mode	7					37				
DESCRIBE EMISSION POINT	0 0	مامام	8					38				
START ROOFVENT - 2nd	from	IUIT	9					39				
HEIGHT ABOVE GROUND LEVEL 10 15 1-4-4 DISTANCE FROM OBSERVER	HEIGHT RE	ELATIVE TO OBSERVER	10					40				
DISTANCE FROM OBSERVER	DIRECTION	6ft STOP 76ft N FROM OBSERVER	11	-	-			41				
STARTW 500 F STOP N 500 FT	START 2	30° STOP 230°			_	-			_		_	
DESCRIBE EMISSIONS		•	12					42	_			
START NOVL		none	13					43				
EMISSION COLOR	PLUME TY	PE: CONTINUOUS INTERMITTENT	14					44				
START N A STOP N A WATER DROPLETS PRESENT:		DROPLET PLUME:	15					45				
NO YES□		ED DETACHED	16					46				
POINT IN THE PLUME AT WHICH OP	ACITY WAS	DETERMINED	17					47				
START N 10 FF OLDOVE VEVIL DESCRIBE BACKGROUND	STOP	same	18					48				
DESCRIBE BACKGROUND	STOR	d					-	-				
START SIM	STOP SKY CONE	OLIONIE	19		-		_	49				
START WALL STOP WALL	STARTIL	LAY STOP CLOCK	20					50				
WIND SPEED	WIND DIRE	ECTION	21					51				
START 5 mph STOP 5mph	START N	W STOP NW	22					52				
START 16°F STOP 16°F	WET BULE	RH.percent	23					53				
			24					54				
Source Layout Sketch		Draw North Arrow	25		-			55				
	Emission	Point C	-			-	-	56				-
F	This side	POINT OU	26							_		_
		C 1	27					57				
Observers Position	[F] 1^	vsooft	28					58				
	111		29					59				
	2		30					60				
- N 14	10°		AVERA			OR .	-			READIN		VE
Sun Loca	ation Line		HIGHES			()	20) ,	% WERE	0	
Maria III kan merita di Kabania Meritan			RANGE	OF OP	MINIM		22		MAXIN	илм	0	
Key	/4 1		OBSER	VER'S N			0		170 0 1111	-	<u> </u>	
prin ← Plume ← V	Vind			BAH	n Wi	Illia	n					
COMMENTS	COMMENTS			VER'S S	IGNATI	JRE C			DAT		<u> </u>	1.0
no unisations observed			OPPOALL				W			12/1		114
			ORGAN	VII	EVVIV	OVIVO	ental	CONS	ulta	MIS, II	nc.	
I HAVE RECEIVED A COPY OF THESI	OPACITY	OBSERVATIONS	CERTIF	ED BY			-1109		DAT	Ęι	^	
SIGNATURE					Met	•				Tioli	4	
TITLE		DATE	VERIFIE						DAT	E		
									Ц.			

ATTACHMENT F ACCESS ROAD OWNERSHIP DOCUMENTATION

Property Characteristics for PIN:

26-18-200-026-0000

PROPERTY ADDRESS	INFO FOR TAX YEAR	2017
10740 S BURLEY AVE	Estimated Property Valu	ıe:
CHICAGO	Total Assessed Value:	21,741
60617	Lot Size (SqFt):	52,098
Township: HYDE PARK	Building (SqFt):	
	Property Class:	5-80
MAILING ADDRESS	Tax Rate (2016):	7.162
CRONIMET CORPORATION	Tax Code (2017):	70030
1 PILARSKY WAY		

TAX BILLED AMOUNTS & TAX HISTORY	EXEMPTIONS	APPEALS				
2017: \$2,400.65* Paid in Full 2016: \$4,364.81 Paid in Full 2015: \$3,993.82 Payment History	2017: Not Available 2016: 0 Exemptions Received 2015: 0 Exemptions Received	2017: Not Available 2016: Not Accepting Appeals 2015: Not Accepting Appeals				
2014: \$4,043.88 Payment History 2013: \$3,963.42 Payment History *=(1st Install Only)	2014: 0 Exemptions Received 2013: 0 Exemptions Received	2014: Not Accepting Appeals 2013: Not Accepting Appeals				
REFUNDS AVAILABLE	TAX SALE (DELINQUENCIES)	DOCUMENTS, DEEDS & LIENS				
No Refund Available	2017: Tax Sale Has Not Occurred 2016: No Tax Sale 2015: No Tax Sale	1433529101 - RELEASE - 12/01/2014 1433529100 - RELEASE - 12/01/2014 0704741091 - WARRANTY DEED - 02/16/20				
	2014: No Tax Sale 2013: No Tax Sale	0010698219 - MODIFICATION - 08/02/2001 00210967 - RELEASE - 03/24/2000				

ALIQUIPPA, PA 15001

All years referenced herein denote the applicable tax year (i.e., the year for which taxes were assessed). Parcels may from time to time be consolided subdivided. If information regarding a particular PIN appears to be missing for one or more tax years, it is possible that the PIN has changed duconsolidation or subdivision. Users may contact the Cook County Clerk's Office for information regarding PIN lineage. Users should also note the information displayed on this site does not include special assessments (which are billed and collected by municipalities) or omitted taxes (which are assess an ad hoc basis by the Cook County Assessor's Office). Please direct inquiries regarding the status of special assessments to your municipality. Quiregarding omitted taxes should be directed to the Assessor's Office.

Note: This printout cannot be used as a tax bill.